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Abstract

Many traditional approaches to systems software do not adapt well to the complexity and scale of
distributed systems, but realities of scale and the growing dependency on electronic communication
and resource sharing nevertheless make some degree of distribution inescapable. Among other
things, distributing systems software introduces complex failure modes and event orderings as
well as issues related to heterogeneity and communication latency. Language designers have been
investigating techniques for expressing complex systems more cleanly and effectively: various
combinations of language mechanisms such as a parameterized module system. first-class functions,
abstract types, exceptions, polymorphism, and a strong static type system can also be applied to
great advantage in the design, implementation and maintenance of distributed systems.
The dissertation evaluates the benefits of high-level language support in the design and implemen-
tation of communications software for distributed systems. Three case studies illustrate the effects
of distributed system design and implementation within the framework of a type-safe high-level
language with advanced language mechanisms: a remote procedure call system, a distributed Linda
system, and a protocol processing framework. The case studies are designed and implemented using
Standard ML of New Jersey, which supports many of the relevant language features. Analysis of the
design and implementation processes illustrates the benefits and drawbacks of using these advanced
language features both individually and in combination to support distributed systems.
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Chapter 1

Introduction

The dissertation evaluates the benefits of applying high-level programming languages and their
associated language mechanisms and constructs to the design and implementation of distributed
systems software, focusing especially on communication software. Specifically, it considers the
design and implementation of three case studies: a remote procedure call system. a distributed
Linda system, and a protocol processing framework. The case studies were chosen to represent
a range of distributed communication-related systems software. The wide acceptance of the RPC
abstraction makes it a somewhat canonical distributed system component, and provides a familiar
and well understood reference point for later discussion. Linda provides a less standard model
of communication and data management, but is sufficiently well-known to qualify as a practical
application. The network processing framework case study attempts to model some of the strategies
being proposed for the design and implementation of next-generation protocols. The design and
implementation experience is used to analyze the impact of the high-level language medium on the
systems in question, particularly in terms of such criteria as flexibility, extensibility, and performance.

Experience with numerous existing programming languages has demonstrated some of the
theoretical and practical utility of versatile language mechanisms and constructs. Language designers
have been investigating techniques for expressing complex systems more cleanly and effectively:
in fact, many of these constructs can be viewed as finely-tuned applications of the more general
abstractions of modularity and encapsulation. Various combinations of language mechanisms such
as a flexible, parameterized module system, first-class functions, closures, a sophisticated type
system and strong type-checking, abstract types, exceptions. and polymorphism can be used to great
advantage in the design. implementation and maintenance of distributed systems.

Parameterized module systems provide flexibility in the form of module-level polymorphism
and link-time module reconfiguration. First-class functions and their associated closure mechanism
provide a type-safe way of modularizing the control flow of programs by encapsulating the function
body with Ats execution environment. A sophisticated type system provides strong guarantees about



the correctness of type-checked programs; support for abstract and user-defined types extends the
protection of the language and type system to a more complex environment tailored to the needs
of the system. Type-safe separate compilation can extend the type-safety guarantees of modularity
through the compilation and linking phases. Exception mechanisms provide a clean, customizable
and type-safe way to propagate error information, even across module boundaries. Various language
mechanisms can also be used to specify explicit concurrency.

Each of these language mechanisms increases the design choices of the system implementor,
but in many cases the real advantages come from using them in combination. More advanced
programming languages provide a unified language framework which can integrate these in a
formal, type-safe way. This makes the whole worth more than the sum of the parts, since the formal
semantics provided by the advanced language framework guarantees that each particular behavior
is defined even when it is used in combination with other mechanisms. This type of guarantee, at
another level, is implicit in most distributed systems. By constructing system components whose
behavior is formally defined by the language, and which work to extend the language semantics as
far as possible across system and machine boundaries, we can achieve both more flexibility and have
more faith in our ability to reason about the behavior of increasingly complex distributed systems.

Advanced language constructs can greatly enhance the power and flexibility of distributed
systems, where standard systems issues are compounded by reliance on remote communication
and the existence of additional degrees of freedom. These manifest themselves, for example,
as complex failure modes and independently administered or heterogeneous system components.
Distributed systems also require the ability to deal with multiple event orderings and relatively
large latencies, thereby increasing the relevance and utility of alternate evaluation strategies such as
delayed evaluation.

Advanced programming languages also have some drawbacks, at least in their current state
of development. The main drawbacks involve performance and conflicts with the type system in
the domain of remote communication. Performance is an important issue in distributed systems
in general, and it is an area in which advanced language implementations have often been defi-
cient. However, the efficiency of languages like Scheme and Modula-3 indicate that many such
performance drawbacks are implementation specific rather than inherent in the language mecha-
nisms themselves. Furthermore, in many cases there are known techniques for solving many of
the specific performance bottlenecks. This is visible, for example, in the ongoing evolution of
Standard ML of New Jersey: as more systems-oriented applications are being developed, there is
increasing incentive to tackle the important performance bottlenecks. Some of the work in progress
includes techniques for improving the efficiency of garbage collection[47], techniques for improving
locality of reference in heap accesses, and incorporating domain-specific knowledge into memory
management to reduce unnecessary paging behavior[ 15].

Many of the typing conflicts arise because of the need to communicate beyond the scope of
the local environment or address space. With strong static type-checking, the language can make
guarantees about the behavior of objects within its own domain, and consequently has no need to
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retain runime type information. Remote communication involves exporting and importing objects
to and from foreign environments, and therefore requires sufficient runtime type information to
perform message marshaling and unmarshaling as well as sufficient trust or authentication to inject
untyped messages into its local environment as trusted, typed objects.

Layering is often a natural model for distributed system design. A certain amount of logical
modularity is inevitable in distributed systems, since the physical separation of system components
enforces the restriction that they be accessed only via their exported interfaces. Thus, communica-
tion is effectively a hidden layer connecting the components of a distributed application. Language
supported modularity in the form of parameterized modules makes layering a feasible, type-safe
way to support reconfiguration, code re-use, and rapid prototyping. In layered architecture imple-
mentations, for example, allowing program modules to reflect the protocol layers greatly increases
the clarity of the implementation. With language supported modularity and encapsulation in the
form of first-class functions, we can introduce closures into the layer interfaces and provide the basis
for function composition and alternate evaluation strategies in a type-safe modular way, providing
an opportunity to improve program efficiency by using domain-specific knowledge to control the
control flow of the system.

Although the arguments in the thesis apply to the language mechanisms and constructs in the
abstract, the case study methodology necessitates the choice of a particular implementation platform.
Although a number of languages support various subsets of the relevant language mechamsins.
Standard ML(43] (SML or simply ML) and the Standard ML of New Jersey (SML/NJ) compiler[5]
were selected. SML's formal semantics and type safety combined with its incremental approach
to constructing large programs make it an attractive candidate for building complex distributed or
parallel programs. In addition to having the most complete set of the desired language mechanisms,
SML has the additional advantages of a body of ongoing research in several important directions.
Some of this research includes language extensions, both from a language theoretical and practical
usage point of view; performance improvements; and as a vehicle for the implementation of real
applications. Despite its many advantages, SML also has some important drawbacks. It does not
currently support any form of runtime type information, and its performance and memory usage
characteristics are still problematic.

The application of high level languages to systems programming draws together distinct spe-
cializations, including distinct sets of terminology and ideology. Chapter 2 provides a brief tutorial
on some relevant background and terminology used throughout the body of the thesis. including
some specific to SML/NJ, and reviews related work. Chapters 3, 4 and Chapter 5 explore each
of the case studies in turn, presenting details of the design and implementation and detailing the
associated application of the relevant language constructs'. Chapter 6 presents some baseline mea-
surements of basic operations in SML/NJ and C, along with a brief discussion of some performance

1 Since examples are presented in SML/NJ syntax, these include some brief ML tutorial segments: more details on ML
syntax and semantics can be found in Appendix A.
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issues. Chapter 7 provides some global discussion analysis based on the detailed results presented
in previous chapters, and concludes with a discussion of contributions and future work.
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Chapter 2

Background

This chapter provides some background helpful in understanding the rest of the thesis. The discussion
is divided by topics, so readers can skip over topics in their areas of expertise. Section 2.1 defines
some of the relevant terminology used in the thesis I. Some of these terms are used in conflicting
ways in different computer science disciplines, so these definitions can also be used to resolve any
ambiguity. Section 2.2 describes other work related to systems applications of high-level languages
as well as to various sub-topics of the thesis.

Examples are given in SML syntax. High-level descriptions are embedded in the text: paragraphs
of SML tutorial in the text are offset and italicized so that they can be easily identified as such.
Appendix A provides a more detailed introduction to SML syntax and semantics.

2.1 Terminology

2.1.1 Language Mechanisms

Evaluation Strategies

Parameters There are two basic evaluation techniques applied to parameter and variable binding.
A language employs lazy or non-strict evaluation if it evaluates the value of an expression (and
memoizes it, or stores it away for future reference) only when it is needed. The memoization keeps
the value from being recomputed on successive references. Eager or strict evaluation means that an
expression is evaluated when it is first encountered.

Lazy evaluation has a side effect related to program termination. If an expression contains a
clause which has an undefined value, strict evaluation will result in the value of the entire expression
being undefined. With lazy evaluation, however, the undefined clause causes an undefined result

'Several of the definitions were taken from Sethi [53]. Field and Harrison [22]. Wart [61], and Reade [50].
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only if it is actually executed. this makes it possible to return defined results even in the presence
of undefined clauses. As an example, consider an if statement whose conditional expression is a
disjunction of two or more clauses:

if (n < 0) orelse ((n div x) > 20)
then

else ...

The statement may be legal code, but in the case where x is equal to zero the second clause of the
condition is undefined2 and will cause a division by zero exception. Under strict evaluation, the
exception will be raised any time the value of x is zero. Under non-strict evaluation, the second
clause will not be evaluated in cases where the value of n is less than zero, since its evaluation is
not required to produce the value of the conditional; in this case, the enclosing function may still
return a well-defined value.

Expressions Evaluation strategies can be broken down into three broad categories: lazy evaluation,
delayed evaluation, and eager evaluation. There are many specific variations within these categories,
but for simplicity we choose to consider them as generic categories. We look beyond their usual
application in parameter evaluation, and consider the strategies across a wider domain of distributed
system functionality.

Lazy evaluation is an evaluation strategy in which an expression is evaluated and memoized
(stored for future reference) at its first use rather than at its invocation. If the value is never accessed,
it is never evaluated. Lazy evaluation can enhance performance in cases where the lazily evaluated
functions represent significant computation time and/or resources to produce results which may
never be required; in such cases, performance is improved by eliminating the processing time for
unused data.

Delayed evaluation is similar to lazy evaluation except that it is assumed that the processing
will eventually take place. The evaluation takes place in idle cycles or on demand, rather than at
the time of invocation, and the results are memoized. It is also useful for increasing parallelism in
a program, since a lazily evaluated function can be handed off to another processor to be executed
in parallel with the enclosing instruction sequence. The ability to delay execution arbitrarily also

makes it possible to recombine operations in such a way as to minimize data accesses [261, which
can result in significant performance improvements. The future construct in Multilisp [33] is an
example of delayed evaluation.

An eager evaluation strategy is one in which all functions are executed to completion at in-
vocation, and in fact may result in the generation of even more data than is explicitly required.
Eager evaluation strategies are often used in remote data accesses or caching strategies, where the

2div is the SML operation for integer division
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implementation exploits the assumptions of locality of reference to pre-fetch data in the hopes of
avoiding transfer latency for the next request.

Functions Treating a function of n arguments as a successive application of n single-argument
functions is called currying. A curried function may be used to create a new function object by
applying it to a strict subset of the original argument list. This is an application of higher-order
functions which is sometimes called partial application. For example, consider a curried function
f which takes two integer arguments and returns their sum:

- fun f (x: int) (y: int) = x + y;
val f = fn : int -> int -> int

The lines preceded by a' - * are the user input to SML. and the lines immediately following are SML's
representations of the result types. f is definedas a curriedfunction which, when applied to two consecutive
integer arguments. computes their sum- The SML interpreter shows that f is afunction (using the keyword
fn rather than attempting to represent the function body). whose type specification is int -> int >

int. The -> symbol separates the arguments from the return values ofa function in a type specification;
this particular specification can be read as "a function which takes an integer argument, and returns a
function taking an integer argument which returns an integer".

Note that it is not always necessary to specify argument types because of SML's inductive type mechanism,
but since + is an overloaded function it does not provide enough type information for induction in this
case.

The above example defines a function f, which SML recognizes as a curried function taking
two successive integer arguments and returning a result of type integer. The expression I f x y = x
+ y} is equivalent to Ax.Ay.(x + y) in A-calculus notation. Applying f to the integer 3 yields a new
function, g, which takes a single integer argument and returns the value of its argument incremented
by3.

- val g = f 3;

val g fn int -> int

- g 4;

val it 7 int

Continuations are functions representing the "work remaining to be done" in a partially evaluated
function application. In general, a continuation may be viewed as a mapping that, when applied to
the additional inputs required by the computation, will yield the final result.

Control Constructs

An exception is an indication or signal that an exceptional condition has arisen. The operation that
issues the signal is said to raise the exception. Exceptions can not be ignored: if an exception is
raised, the program will halt unless a corresponding handler has been provided. However, every

7



exception can be handled, and the programmer has complete control over what the handler does
when it is invoked.

An exception facility provides a clean way of propagating error information across arbitrary
numbers of program layers. Since exceptions are propagated to the nearest enclosing handler, each
program layer has the flexibility to either intercept exceptions or to allow them to propagate through
directly.

For example, the following code declares an exception called MyD iv and a function div-by -y.
The function divides its first argument by its second argument. It provides a handler for the system
exception Div, which is raised by the system on division by zero.

exception MyDiv
fun divby_y (x:int) (y:int)

x div y
handle Div => (print "Division by zero.";

raise MyDiv)

This codefragment defines an exception MyDiv and a function div.byy. div.by-y takcs two integer
arguments, x and y, and uses the built-in function div to compute the (integer) value of dividing x by y.
The keywond handle indicates the start of an exception handler. Tih identifier following it is the name of
the identifier being handled (in this case the system-definedexcepti, Div, which is raised on division by
:ero); and the expression following the -> symbol is the body of the expression handler In this case. the
handler simply prints an error message and raises its own exception in place of the system-deftned one

If Div is raised, the program will print out an error message, and raise its MyD iv exception. This
construction avoids the overhead of checking the divisor value on every invocation, yet responds to
the error condition with a meaningful error message before exiting.

Function composition is a mechanism whereby the results of one function become the input of
the next. The symbol 'o' denotes function composition, which is defined mathematically as:

(fo g) (x) = f (g (x))

In other words, the composition of the functions f and g applied to an argument x is equal to
the results of applying f to the results of g (x). The UNIX pipe construct can be considered an
example of function composition where all the inputs and outputs are constrained to be characters
or sequences of characters. Function composition is an application of higher-order functions.

A function is recursive if its body contains a call to itself. Recursion is frequently associated
with functional languages, since it is especially useful in the absence of side-effects or assignment.
A function is rail-recursive if any recursive calls occur only as the last expression to be evaluated in a
sequential, eager evaluation. This means that there is no need to store intermediate return addresses.
since the called function can return directly to the return address of the current invocation. For
example, fact I is tail-recursive, while fact 2 is not3:

3For simplicity, these examples leave out tests for negative arguments.
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fun factl x =

let
fun f (0, v) = v

I f (n, v) = f ((n - 1), (v * n))
in

f (x, 1)
end

fun fact2 0 = 1
i fact2 n = n * (fact2 (n - 1))

Although the functions factl and fact2 appear to be multiply defined in the above code fragment.
the syntax is actually an example of SML's pattern matching syntax (see Appendix A). The possible
representations of one or more of the function arguments are enumerated in the cases of the functaon
definition; each case is followed by its version of the function body. The multiple cases are separated by
the symbol 1. In this case, the pattern-matching is used to recognize when the argument has a value of

zero, so that the recursive function can be terminated.

Both implementations are recursive, but fact2 is not tail-recursive because it must perform a
multiplication after the completion of the recursive call.

Types and Data

A function is first-class if it has the same status as any other value: it can be the value of an
expression, or it can be passed as a parameter, returned as a result, or stored in a data structure.

A related concept is that of higher-order functions. To be completely general, support for first-
class functions should be recursive: a functional argument may itself have a functional argument,
and so on. A function is called higher order if either its arguments or its results are themselves
functions.

A closure is a combination of a function body and its evaluation environment. This composite
structure is called a closure because it represents a closed expression, i.e. an expression which
contains no free variables. A first-class function may escape from its lexical scope by being implicitly
or explicitly returned as a function value; any function escaping its scope must be associated with
bindings for its free variables.

A function designed to take arguments of mutable type is called polymorphic. Polymorphism
can be specified via a type variable, which can be statically type-checked. The following example
defines a function identity which takes a polymorphic parameter of type ' a and returns it4. The
function return type, although unknown, is constrained to be the same as that of its parameter.
Invoking the function with an argument of 3 causes ' a to be instantiated as an integer, while

ASML uses the single-quote character to tag its type variables; the tagged variables axe read as the corresponding
Creek letters to distinguish them f-om regular variables. Thus, ' a is read as alpha

9



invoking it with an argument of true instantiates 'a as a boolean. In both cases, the original
parameter becomes the return value.

- fun identity x = x
val identity = fn: 'a -> 'a

- identity 3;
val it = 3 : int
- identity true;
val it = true : bool

Mutable data is data which can be modified in place. For example, an array whose elements can
be individually modified is a mutable array. The structure of the array itself is not modified, but the
values of its elements may change. Immutable data, on the other hand, will be replaced rather than
modified. For example, concatenating a value to the end of a string will create a new string, leaving
the original unchanged. Apure functional language has no mutable data, since it has no side-effects
or assignment statement with which to mutate data.

Memoization is a technique used to avoid recomputation of results. It works by internally
storing the results of a specific computation in an table keyed on the expression parameters so that
subsequent invocations with the same parameters will result in a lookup rather than a recomputation.
For example, a memoized Fibonacci function would take only linear time (O(n)) to run because
instead of invoking a recursive computation a result would be stored for each intermediate value the
first time it was computed.

An abstract data type consists of a type definition together with an explicit set of operations,
which are the only means by which to compute with values of that type. The type represeutation and
the operation implementations are encapsulated within the abstraction boundary; only the interfaces
are exported.

Dynamically typed languages [61] only require fixed types for values. A variable or parameter
may take values of different types at different times. Dynamic typing implies that execution of the
program is slowed down by implicit run-time type checks, and also implies that every value must
be tagged to identify its type; however, it has the advantage of increased flexibility.

Statically typed languages [61] require that a fixed type is assigned to every variable and
parameter at compile time. The compiler uses this information to deduce the type of each expression
and to type-check each operation. Statically types languages are more efficient at runtime because
there is no need for run-time type checks, but provide less flexibility than dynamically typed
languages. An extension of this is to enable the compiler to deduce types, reducing the burden on
the programmer.
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Programming Abstractions

Layering is an application of modularity where each module encapsulates an independent logical
layer of a program. This approach facilitates configurability by allowing multiple different im-
plementations of each logical layer, with each corresponding to a different program structures and
components. It is useful for supporting transparency, or the notion that the system functionality is
invisible, or transparent, from the point of view of the application.

Like many programming methodologies, modularity has little to do with the ultimate function-
ality of a particular program. It does, however, have much to do with other parts of the software
life-cycle, particularly the design and the maintenance phases. Modularity has long been recognized
as an effective programming technique even for non-distributed systems, and it becomes even more
important in distributed systems with independent and potentially mobile components.

Well designed modules also have a tendency to become re-usable program building blocks.
Programmers frequently use the same basic data structures to solve many different programming
problems. Shared modules have a tendency to be better documented and tuned than private ones,
since sharing implies that many people have a need to understand and trust the interfaces and
implementation.

Encapsulation is an abstract concept, and as such can be applied to programs written in any
programming language. Nevertheless, with the right language support modularity makes a much
more effective tool. For example, the definition of the C programming language specifies the
behavior of the language constructs, not their implementation. However, because C implementation
details are accessible to C programmers and because C does not provide strong type checking, there
programmers have been able to rely on implementation dependent features in their programs. This
situation creates interactions between the programs and the language modules that are not explicit in
the language specification: this makes it difficult to make changes or improvements to the language
implementation, and it makes it quite difficult for any programmer not intimately familiar with a
program to maintain or debug it.

Programming Methodologies

There are four basic programming methodologies: imperative, functional, and object oriented, and
logic. This section gives a brief description of the essence of each approach.

The semantics of imperative languages are based on the concept of a store, or memory ab-
straction; the programming model for such languages consists mainly of updating the contents
of memory [591, or mutating program data. This is the programming methodology used in most
traditional programming languages, such as Pascal or C.

Pure functional programming can be characterized as programming without assignments, or
stateless programming. Although many functional languages, such as Lisp or SML, are impure
because they do provide assignment, their programming style is nevertheless dominated by the pure
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part of the language and most data is immutable. Another characteristic of functional languages is
that users do not have to worry about managing storage for data. Built-in operations on data allocate
storage as needed. Storage that becomes inaccessible is automatically deallocated. The absence
of explicit code for deallocation makes programs simpler and shorter, but a consequence of this
approach is that the language implementation must perform garbage collection to reclaim storage
that has become inaccessible. Finally, functional programming treats functions as first-class objects.

Object-oriented programming languages, such as SmallTalk, encourage a programming style
that relies on the concepts of inheritance and data encapsulation. The object-oriented programming
paradigm is based on the concepts of object and object class. An object, much like an abstract
data type, is a variable encapsulated with operations that have the exclusive right to access it. An
object class is a set of objects that share the same operations, or methods. Inheritance is a language
mechanism for defining a new class of objects as an extension of previously defined classes. The
new class inherits the public data structures and operations of its ancestor classes. In particular, a
subtype can be defined by extending or modifying the characteristics inherited from an existing type,
or supertype. A distinguishing feature of object-oriented programming is captured by the property
that an object of a subtype can appear wherever an object of a supertype is expected.

Logic programming languages, of which Prolog is a commonly cited example, was developed
primarily for natural language applications and theorem proving. Its name comes from its approach,
which is basically an application of mathematical logic rules to a particular set of data.

2.1.2 Communication

OSI Protocol Stack

The Ltandard for structuring hierarchically designed networks is the Open Systems Interconnection
(OSI) Reference Model [57,67], based on a proposal from the International Standards Organriiation
(ISO). This model represents network processing as a seven layer hierarchy (see Figure 2.1), where
each layer is responsible for a different segment of the processing and has its own view of the data.
Logically each layer communicates dircctly with the corresponding layer on the remote peer, but the
actual data and control flow of a transmission proceeds hierarchically from the sending application
down the protocol layers to the physical communications medium, and then back up the layers on
the remote machine to the receiving application.

Of the seven layers, those of most concern to high level distributed communication software
are the presentation, session, and transport layers. The task of the transport layer is to provide
reliable host-to-host communication for use by the session layer. It must hide all the details of
the communication subnet from the layers above. The session layer is responsible for setting
up, managing, and terminating process-to-process connections. It also handles certain aspects of
synchronization and recovery. The presentation layer performs various transformations on the data
to be sent, such as text compression, byte swapping, conversions to external data representation
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format, or possibly encryption.

Application layer

Presentation layer

. ................................... ................... ... . 5

M ............................................... I 2
Transport layer

4........ ......................................................... > ' 4

Network layer

Oata Link layer
2..... .......................................................... 2

11 , _ 1] .Physical layer --

Figure 2.1: OSI Reference Model

The process of linearizing the message data into a form suitable for transmission is referred to
as marshaling. The specific form of the marshaled data is defined by an external data representation
format on which any sender-receiver pair must agree, either statically or via some form of negotiation.
The process of restoring the message data to its original form is called unmarshaling.

Protocols

Remote procedure call [45] (RPC) is a synchronous communication protocol which extends con-
ventional procedure call semantics to distributed systems: the sending process blocks and waits for
a reply from the receiver before continuing. Its familiar semantics make it an intuitive model for
programmers, and it has been adopted as the standard communication protocol for many systems5.

Message passing usually refers to a high-level asynchronous communication protocol. Messages
do not require acknowledgments, so their latency may be as low as a one-way network trip rather
than the round-trip time required by RPC. However, many sync hronization and reliability issues
become the responsibility of the application programmer.

Another useful mechanism for distribut -d systems is group communication. Remote communi-
cation is often directed at groups of remote hosts rather than to a single remote process. Mechanisms

SRPC is the standard communication protocol for both SUN's Open Network Computing (ONC) and the Open Software
Foundation's Distributed Computing Environment (DCE), which together are run on roughly 85% of UNIX workstations
as of 1991.
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such as broadcast, which sends a message to all connected hosts. or multicast, wbuch sends a message
to a previously defined group of hosts, can be less complicated, more flexible, and more efficient
than an equivalent sequence of sequential calls.

2.2 Related Work

This chapter discusses some systems and protocols that provide groundwork or motivation for
various parts of the thesis.

Parallelism

Mach [2]is a shared memory multiprocessor operating system supporting multiple threads of control
within the same task. or address space. It also supports a customizable external pager mechanism
which provides thz basis for many of the SML garbage collection optimizations.

C-Threads [17] is a user-level thread package implemented for the C [35] programming language
on top of Mach. It exports creation and synchronization primitives.

Linda [10, 23] is a programming language veneer intended to facilitate parallel programming.
A Linda implemenmation for a given programming language extends that language with a simple
programming model implemented by a handful of new operators which treat communication as
movement data in and out of a common, potentially distributed space. The model is conceptually
similar to a distributed shared memory implementation, but program and communication data are
treated in a uniform way, and are accessed via pattern matching rather than by normal addressing
modes. Further details can be found in Chapter 4.

High-Level Languages

Systems Implementation

There has been work on applying advanced language paradigms to deal with heterogeneity in the
context of traditional programming languages. The HRPC system [6] enables the interchange of
RPC components by fixing a set of component interfaces. The x-kernel [49] is an operating system
kernel allowing applications to access existing heterogeneous distributed resources by dynamically
choosing the appropriate communication protocol. The Mercury [391 system uses a closure-like
mechanism to modify remote port specifications.

Previous work exploring systems software implementation with high-level programming lan-
guages includes the Cedar System [58], implemented in Mesa [44] at XEROX PARC; the Topaz
system, implemented in Modula-2 [64, 511 at DEC SRC; and the Swift system [13], implemented
in CLU [381 at MIT. Various systems software has also been implemented in languages such as
Lisp [421, Ada [60], and Argus [40,41], and is beginning to be implemented in SML [ 18, 15]. These
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systems each provide useful data on the utility of some specific advanced language mechanisms:
in particular. the importance of an exception mechanism, explicit concurrency mechanism (e.g.
threads), and encapsulation via interface specifications were recurring themes.

All of these languages support some subset of advanced language mechanisms, but each is
missingenough to significantly reduce the full benefit of the interactive effects. All but Lisp and SML
are imperative, and do not include formal semantics or support for first class functions. Although
C++ supports parameterized modules, only CLU. Modula-3, SML and ADA combine them with
compile-time type-checking. Although it does not support inheritance or run-tirne type information,
SML has formal semantics and supports a parameterized module system, strong compile-time type-
checking, first-class functions, and exceptions: the combination of these language mechanisms
combined with its current state of ongoing development make it an attractive platform for this study
and for potential future development.

Protocol Architectures

Clark and Tennenhouse propose Integrated Layer Processing 14] (ILP) as a structuring mechanism
for improving the performance of protocol processing. ILP is a scheme for reducing communication
latency in an implementation of a layered protocol architecture by integrating processing components
by function rather than by logical layer, collapsing some of the OSI layer boundaries and composing
related operations. Some of the modularity of logical layering in the implementation is abandoned
in order to more effectively tune the performance.

They illustrate the pripciple by considering two common protocol operations: checksum in the
transport layer, and marshaling operations at the presentation layer. Both operations must touch every
byte of data. In a conventionally layered protocol implementation this would require two separate
passes over the data, with the data access itself making up a significant fraction of the processing
overhead each time. ILP reduces the total cost of the operations by separating the implementation
from the layered design, collapsing the layers so that both operations can be performed within the
scope of a single data access.

ApplicationLevel Framing [ 14, 20] (ALF) is a strategy of organizing transmitted data into logical
packets, or frames, meaningful to the application. Conventional packet divisions are arbitrary with
respect to application data, requiring communication processing to be strictly sequential. ALF allows
greater flexibility and potentially better performance in the control and processing of remote data;
in particular, since each packet contains data meaningful to the application, protocol and potentially
even application processing can be performed on each arriving packet independently. The work also
considers strategies which provide the sender with information about the data representation on the
receiver so that final placement information can be incorporated into such Application Data Unit
packets.

Some effects of delayed protocol evaluation on the performance of a model protocol implemented
in C is considered in Gunningberg [26]. The authors compare the performance of a pipelined
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invocation of the encoding, checksum and encryption operations to that of the traditional sequential
model. Their results show that alth Dugh their results are dominated by their choice of DES encryption
algorithm, the individual results nevertheless indicate improved performance for the pipelined
implementation.

Heterogeneity

Heterogeneity poses more problems in distributed systems than just presentation layer processing
complexities. Linking previously independent systems together into a loosely-knit distributed
system yields exponential combinations of communication protocols, hardware platforms, operating
systems, programming languages, and many other features. One attempt to deal effectively with
the heterogeneity involves identifying common functionality and designing the b.;stem with enough
modularity to allow sharing of common code whenever possible [6, 49, 56].

The x-kernel [49] is an operating system kernel dedicated to providing support for multiple
communication protocols, all of which export a common application interface. The focus is on using
modularity to support diversity, allowing applications to access existing heterogeneous distributed
resources by dynamically choosing the appropriate communication protocol.

Morpheus [1] is a language-based approach to protocol implementation based on the x-kernel
work, imposing design constraints on the programmer in order to improve the power and efficiency
of the programming process and of the resulting protocol implementation.

Communication

There have been numerous RPC implementations. Some of the instances most relevant to the
current work deal specifically with heterogeneity and its effect on communication. In particular,
the HRPC [61 deals with a heterogeneous machine and system environment, work by Hayes et
al. [27] explores issues of mixed-language environments, Gibbons [25] considers a modular, cus-
tomizable RPC implementation for heterogeneous environments, and Sollins [55] and Herlihy [30]
examine issues of external representation formats and translation mechanisms for heterogeneous
communication, instances

Work in progress at CMU addresses the issue of support for distributed first-class values in
SML [46]. Memory management techniques and lazy transmission are used for efficiency, and
standard SML sharing semantics are preserved.

First-class functions have also been used for other aspects of distributed communication. The
Mercury [39] system uses a closure-like mechanism to modify remote port specifications. A port
in Mercury is essentially a specification for a remote function, including parameter, return, and
exception types and a location. An interface is composed of a set of ports which specify the
functions imported and exported by a service. A client may export a modified port by pre-binding
some of its parameters, providing an additional level of interface flexibility.

16



Fault Tolerance

One of the most widely used fault tolerance mechanisms is replication. Replication involves
maintaining logically consistent copies of whatever hardware or software system component is
being replicated. One form of hardware. replication is mirrored disks, where all disk writes are
automatically made to two or more identical disks; should the primary disk fail, the system can
transparently switch to one of the mirrored copies.

Similar strategies are used for software replication. To maintain strict copy consistency, an
operation cannot be permitted to complete until all the relevant replicas have been updated. Much
of the challenge in designing replication algorithms is to maintain consistency without trading off
too much performance in the process. One approach is to use quorums of replicas for accessing and
updating objects [29]. To use querums, all replicas are marked with some form of version number
so that it is always possible to identify the most recent copy among any group of replicas. Imagine
a data file that is often referenced, but updated only once a day. Suppose we replicate it on three
machine- to ensure its availability. If we require that all updates succeed atomically on all three
replicas, then we ensure copy consistency and it is only necessary to read from one replica. Or, if
we require atomic updated to two replicas, then reading from two replicas will ensure that at least
one of them will have the most recent ,rersion of the data. In general, read and write quorums can
be chosen to optimize frequent operations at the cost of less frequent operations; the invariant is that
they must always overlap.
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Chapter 3

Remote Procedure Call System

3.1 Motivation

Communication is a fundamental part of any distributed system, but it is also the source of many
complexities. Many of the issues that make distributed systems difficult to program and maintain
are introduced either in the process of communicating from one site to another, or in recognizing
and reacting to the wide variety of distributed failure modes. An important role of the systems
programmer is to encapsulate the complexities of the systems issues into modular packages that
provide services required by applications programmers: for distributed systems, this includes dis-
tributed communication and failure modes as well. Ideally, the applications programmer should
need a minimum of systems knowledge to effectively integrate the systems packages into a particular
application, and the same should be true in the presence of distribution.

In practice, however, much of the complexity of distributed system state escapes from the
systems packages through to the application and even all the way back to the user. In conventional
programming languages, managing complex state often implies shar•ng global variables; this makes
the application programmer's choice of variable names sensitive to the naming schemes of any
imported systems packages. Most conventional languages do not enforce interface specifications, nor
do they allow private (nested) procedure definitions or offer protection from implicit dependencies on
values of global variables. The interdependencies can be even more complex in a distributed system,
where an application programmer may not even have access to all the necessary information about
system state: in that case, it is imperative that a systems package be able to reliably encapsulate
its private data, so that the integrity both of the system and of the application can be properly
maintained. Many of these pitfalls can be avoided with the help of a reliable type system and a
built-in module system with language-enforced interface specifications.

The many variables involved in distributed communication in a heterogeneous environment have
led most systems programmers to customize implementations in order to optimize for the needs of
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their particular systems. Choices such as programming language, machine type, and external
representation format all affect the processing required by the communications system; application-
specific features such as the amount, complexity, and frequency of data being communicated can
have significant performance implications as well. With adequate language support, however,
customization need not always imply re-implementation. A system can be a set of tailored building
blocks rather than a monolithic structure: an application programmer can customize a system by
choosing an appropriate combination of blocks and possibly providing a small amount of -glue"
in the right places, using the blocks in much the same way as a C [35] programmer might include
UNIX [37] system libraries.

The m.Ain difference, from the point of view of the application programmer, is the extra safety
and simplification provided by the high-level language support. This type of modular system must
be easily configurable and extensible so that it can accommodate a wide range of applications'
needs. Language supported encapsulation, both at the language and module level, provides the
implementation independence required to support effective modularity: for example, the application
programmer as well as any systems module implementors can choose names freely within their own
scopes without having to worry about external name conflicts. A parameterized module system
provides type-safe module reconfiguration at link time, and the first-class status of functions even
allows a degree of type-safe runtime configuration based on records of typed functions . A powerful,
integrated type system ensures that the imported system modules can only be combined in meaningful
ways, and imposes a structure on their associated datatypes which is enforced by the language. The
strong static type-checking guarantees local runtime correctness, and careful system design allows
some guarantees to be extended even across system boundaries. This ensures that there is virtually
no danger of errors due to syntactic misconceptions. Thus, high-level language support can convert
a haphazard collection of libraries into a structured system by specifying and enforcing a small
set of fixed interfaces, ensuring the correspondence between the exported interfaces and their
implementations.

A common conceptual model of a distributed system is that of a non-distributed application
with a communication package layered in between the peers, and it is often advantageous to
have the implementation take the same approach. The RPC case study makes extensive use
of layering abstractions: the flexibility and conceptual simplicity of these high-level language
abstractions increases the expressive power and efficiency of the programmer. The main goal
is flexibility, in several senses: reconfiguration, extensibility, module re-use, and ease of use
(transparency to applications). Configurability is based primarily on a parameterized module system.
The parameterized modules provide a kind of higher-level polymorphism, allowing the module
implementations to vary but keeping the interfaces fixed. This approach allows different protocols
to be represented as multiple implementations of the same signature-'. Because the module system

1These function records are similar to the untyped transer vectors used in, for example, 1/0 routines.
2For example, UNIX sockets and Mach IPC could both be used to implement a transport signature
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is parameterized, the available set of modules can be easily recombined at link time to provide the
desired combination of protocols and features. Adding a new module implementation need only
involve those applications actually using it.

The naming hierarchy imposed by parameterized modules simplifies the re-use of existing
code, which implementors often want or need to use in their systems. In principle, of course,
module re-use is not restricted to high-level languages. In practice, however, complications in
conventional languages with adjusting interfaces, coordinating variable names, and deciphering
type representations tend to prevent this sort of sharing except occasionally within fairly tightly-knit
organizational groupings.

A strong static type-checking mechanism provides a well-defined, structured programming
environment and can greatly simplify the task of the programmer. It also provides strong semantic
guarantees about even the runtime type safety of the code. In addition to the usual careless mistakes
and typographical errors, complex semantic or conceptual errors often manifest themselves as type
errors. Furthermore, language supported encapsulation increases the programmer's control over the
local state, and therefore over the ultimate behavior of the program.

We explore the process of designing and implementing an RPC system within the environment
of an advanced programming language, considering the advantages and drawbacks introduced by
the availability of its powerful language mechanisms. Section 3.3 presents some relevant aspects
of the design and implementation of the main modules in the RPC package, and provides some
examples of configurations. Section 3.4 discusses the reasons for the interface and implementation
decisions, and analyzes the resulting advantages and disadvantages.

3.2 Remote Procedure Call

The RPC [7] model of distributed computation, illustrated in Figure 3.1, is one of communicating
clients and servers. A server exports a well defined interface, which may include types, functions,
exceptions, and data, and clients access the server's data or services via this exported interface.
Servers may in turn be clients of other servers. A remote procedure call package is responsible for
handling communication-related tasks as transparently as possible3 .

RPC is so named because it is effectively a remote extension of the semantics of the familiar
local procedure call interface. Although there are necessary complications such as the more complex
error modes introduced by the independent computations, the idea behind remote procedure call
is to provide the programmer with an interface to remote communication which is as simple and
transparent as possible.

31t is usually desirable to provide the client with some sort of handle associated with the remote peer of any particular
connection so that it is capable of interacting with multiple peers concurrently.
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Figure 3.1: Remote Procedure Call Overview
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3.3 Design and Implementation

This section presents a description of the SML signatures describing the interfaces of the main
modules in the RPC system. There are a variety of communication protocols to choose from,
but the wide acceptance of the RPC abstraction makes it a somewhat canonical distributed system
component, and provides a familiar and well understood reference point for later discussion.

The RPC paradigm maps naturally into SML: the remoteness of the server forces encapsulation
of the server internals, constraining all access to come through the exported interface (which is
defined by an SML signature).

Although the roles of the client and server are distinct, the client and server RPC configurations
are roughly symmetric. As illustrated in Figure 3.1, both the client and the server access their local
RPC package via a stub module. The stub modules are tailored to a specific server interface, and
are generally responsible for translating the procedure call types and semantics to and from those
appropriate for remote communication. Stub modules are ordinarily automatically generated by a
trusted stub generator.

Each of the signatures is implemented by one or more SMLfunctors, or parameterized structures.
Some functors export the same signature because of the layered design of the system; functors
exporting the same signature look the same from the point of view of any calling modules, and are
syntactically interchangeable. A functor definition is instantiated to a runtime structure at link-time
by invoking it with instantiated structure parameters, in much the same way as a procedure would
be invoked at run-time with parameters of the appropriate type.

The interface and code segments presented in the text are written in SML. The discussion will
provide some high level explanation of the examples; SML tutorial segments appear offset in smaller,
italicized type. A more detailed tutorial on SML syntax and semantics can be found in Appendix A.

33.1 ML-RPC

The core of the RPC package is composed of the RPC, PRESENTATI.YN, and TRANSPORT signa-
tures and and a functor implementing the RPC signature. The system also includes signatures for
the supporting type abstractions BUFFER and PEER. The package exports basic RPC functionality:
client routines for connecting to a remote peer and making a remote procedure call, and server
routines for creating and destroying service ports, receiving a request and sending a response. At
least one implementation is provided for every signature, although most are intended to be only the
basis for a more extensive library of implementations.

The interdependencies among the main modules are depicted in Figures 3.2 and 3.3. The
rectangular boxes represent interfaces, and the ovals represent implementations. The shaded modules
embody type information, and are not part of the control flow. The sharing of the type modules
constrains the structure of the interface types without fixing their representation. Note also that the
client stub implementation exports the server interface to the client (or at least the modified version
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of it produced by the stub compiler).

3.3.2 RPC Interface

Although the exported functionality is typical for an RPC package, the interface itself is not: it

makes use of abstract types, first-class function parameters, and polymorphism. The RPC signature
is shown in Figure 3.4.

signature RPC =

sig
type rpc-port
structure Buffer: BUFFER
datatype msg = MSG of Buffer.buf I

FN of unit -> Buffer.buf

exception Bind
structure Peer: PEER

(* client-specific routines *)
val connect : Peer.dest list -> rpcport
val rpc : rpc.port -> msg -> msg

(* server-specific routines *)
val create : Peer.dest list -> rpc-port
val recv-req : rpc-port -> rpc.port * -sg
val send-resp : rpc-port -> msg -> unit

val destroy : rpc.port -> unit
end

Figure 3.4: RPC Signature

The RPC signature specifies a conventionalRPC interface. In keeping with convention, the signature name
is in all capital letters. It first declares its exported types and inherited structures, and then declares its

exported operations. The signature exports two types, one abstract (rpc-port) and one explicit (mnsg);
two nested structures, with signatures BUFFER and PEER; and one exception (Bind). The BUFFER and
PEER structures provide a way to constrain the representations of the transmitted message and the remote

peer, respectively, to be shared among the system modules without fixing them absolutely.

The RPC signature exports a structure Buffer, of type BUFFER. This module is used to
represent the transmissible form of the remote message, and all the RPC modules that manipulate
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the message explicitly use the BUFFER signature in order to constrain the type interfaces to be the
same.

The signattr,- also exports an abstract type rpc-port representing an RPC connection to a
remote peer. It also exports a type, msg, with explicitly defined constructors MSG and FN. The
type msg is constructed from the abstract type buf exported by the BUFFER signature, allowing
for different concrete representations but constraining that the representation be shared among the
relevant modules of the RPC system. By using the appropriate constructor, a message can be
specified either explicitly, or as a first-class function which will yield the message when invoked.
This provides the caller with an additional degree of control over the evaluation order of the message
processing: the message can be constructed before making the call, or the construction can be left
to the discretion of the RPC implementation. Delaying the evaluation is safe because the function
automatically includes a closure containing bindings for any free variables that are bound within its
lexical scope. The signature also exports an exception, Bind, which may be optionally handled by
any callers.

The RPC signature also exports the Peer structure, which is used to represent information about
the peer with which the caller is communicating. It specifies types which need to be shared among
several different modules, so it is best implemented as a separate module which can be imported as
a functor parameter by any modules requiring the definitions. The signature for the Peer structure
appears in Figure 3.5.

The PEER signature exports three types which can be used to identify a remote peer. A host
can consist of a string-valued H.NANE, an iht-valued HID, or the null-valued constructor
H-DEFAULT. A port can consist of one of a similar set of port constructors. A dest is a record
with the fields rpeer, whic.. takes a value of type host, and rport, which takes a value of type
port. This set of types can be accessed through the Peer structure in the RPC signature. The Peer
functor definition indicates that the Peer functor takes no parameters, and that it conforms to the
PEER signature.

The function Rpc. connect takes a parameter of type Peer. dest list, and returns an
object of type rpc-port representing the new connection. It is used by the client to set up
the necessary connection state for communication with a remote peer of which it wishes to make
requests; the information necessary to specify the remote peer is encoded in the Peer. de st list
parameter.

The function Rpc. rpc is used by a client to make a request of a server to which it has previously
connected. It provides standard RPC semantics, blocking the client until a reply comes back from
the server4.

Rpc. rpc is a curried function, so applying it to its first argument, the rpc.port. will yield a new function.
This newfunction takes a message object of type mag, and returns another object of type mag representing

'Note that in practice the call can be made asynchronous by forking a new thread to make each synchronous RPC call.
freeing the client to continue with other computation.
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signature PEER =

sig
datatype host =

HNAME of string I HID of int I HDEFAULT
datatype port =

P-NAVE of string I PJD of int I P-DEFAULT
datatype dest D of Jrpeer: host, rport: port}

end

functor deer () PEER =

struct
<host, port and dest definitions>

end

Figure 3.5: PEER Signature and Peer Functor

The set of types exported by the PEER signature are not abstract, since they will be used by various
modules to construct representations of the desired message destination. The types host and port are
defined with the keyword datatype because they are complex types composed of a set of constructors.
The constructors, when applied to the (possibly empty) set of associated types, produce a result of the
specified type. For example. any of HNAME "hostl", HID 504. or HDEFAUL1 would evaluate
to an object of type host.
A functor is a parameterized structure. Its "type" is a signature identifier, and its parameters are SML
structures orfunctors. Afunctor must provide an implementation for everything specified in its signature
It may contain additional functionality or definitions, bvt they will only be accessible from within the
functor (or structure) body. Since it contains only public type definitions, the Peer signature and
structure definitions (i.e., the interface and implementation) will be identical except for the keywords (eSg
signature will be replaced by structure or functor).
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Figure 3.6: Control Flow of Client-Side RPC

the RPC reply The two functnons may be composed: when a curriedfuncotn is applied to cis fIll set of

argumen•s., the compiler can generally opnmue the cppfacaaon into the more efficient tupled argument

Invocaton. However. I the fwiction is applied to only one of its arguments, the result will be a closure

which can be bound to a local name and used like any other procedure. If. for example, a program invokes

'pc several tnies to the same server, it is possible to save compulation by applying the function once to

the relervant connection argument and making the subsequent remote calls using the resulting closure with

the connection parameter already bound.

val replyO - Rpc.rpc coni (FN marshalfunction)

val hostl-rpc - Rpc.rpc conl

val replyl - hostl rpc (FN marshal_function)

val msq - marshal-function ()
val repiy2 - hostl rpc (MSG msg}

For example. # conl isa rpc.port obtectfor hostl and FN marshal-function isamnessaee-
generating function, a client can invoke an RPC call by supplying the two parameters to the signature

function Rpc. rpc. where Rpc. rpc refers to the value (or function, rpc located within the structure

Rpc. Or. a client could define a function host! .rpc by applying Rpc. rpc to conl. and then

proceed to use thatfunction for communication over that particular connection: when applied to an ohbecr
of type msg. host', _rpc sends the message via con1. and returns the reply

The function create is used by the server to create a request port on which to listen for

client request. create takes a parameter of type Peer . dest list specifying any necessary
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information about the server request port, and returns a rpc-port object on which the server can
listen for requests.

The function recv-req is invoked by the server to await client requests; its argument is the
server port on which to listen, and it returns a 2-tuple containing the port on which to reply and the
request message. send.resp is a curried function; it takes the reply port supplied by, recv.req
and a representation of the reply message, and returns unit.

The function destroy can be used by either the client or the server: it cleans up the state for
either a client connection port or a server request port. It takes a parameter of type rpc -port and
returns unit.

The RPC implementation is constrained only in that it must conform to the exported signature.
The package also relies on some supporting systems including a presentation module for marshaling
basic types, an underlying transport module, and client and server stub modules. The client and
server stubs are implemented by parameterized modules, orfunctors, which are generated from the
information in the (unmodified) server signature. For our purposes, the stubs play both a marshaling
and control role. For each operation in the signature, the client functor contains a routine that
constructs (and optionally exccutes) a function which marshals the parameter values into an external
representation, invokes a transport routine to make the remote call, receives the response, and
constructs (and optionally executes) a function which unmarshals the reply value(s). The server
functor provides a listener loop which repeatedly accepts incoming requests and forks a thread to
invoke the proper server operation and transmit the marshaled response back to the client.

Consider an implementation of the RPC signature from Figure 3.4 as a functor with two param-
eters, a transport module with signature TRANSPORT, and a Peer module with signature PEER (see
Figure 3.5).

The RPC functor is parameterized by a transport structure and two modules defining sets of
types: one providing a representation of the remote peer, and one of a buffer abstraction. Client
and server stub functors are responsible for translating application data into the proper format
for transmission, and they make use of supporting structures such as an implementation of the
PRESENTATION signature, implementations of the PEER and BUFFER signatures, and optional
modules implementing functionality such as encryption or authentication.

Figure 3.7 shows a possible implementation of the RPC signature. The abstract type rpc .port
is defined with a datatype which includes types from the Tran structure (see Figure 3.9), one of
its parameters, and from the local datatype port -status (which is not visible outside the functor
body) since it does not appear in the signature). The structure Peer is bound to the parameter
RPeer.

To configure the Rpc functor to use a socket package implemented by a SML structure (or
fumctor) called Sockets, the functor would be instantiated as show in Figure 3.8 to produce
a structure named RpcS (assuming that the structures Sockets and MyPeer had already been
defined). A functor can be invoked an arbitrary number of times; each invocation will yield a distinct
structure object. For example, the Rpc functor could be used to instantiate a second structure which
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functor Rpc (structure RPeer : PEER

structure Buf : BUFFER
structure Tran TRANSPORT) RPC =

struct
datatype port-status = LIVE I DEAD
datatype rpc-port =

C of (Tran.msginfo * port-status ref)
structure Buffer = Buf
datatype msg = MSG of Buffer.buf I

FN of unit -> Buffer.buf

exception Bind
structure Peer = RPeer

< functor body >
end

Figure 3.7: Framework of RPC Functor

takes a Mach IPC transport parameter.

3.3.3 Transport

The RPC system defines a basic transport signature, which is one of the parameters of the RPC
functor. Its signature is shown in Figure 3.9. Using a standardized interface allows the system
to switch transparently among transport implementations. Since it is reasonable to assume that a
transport implementation will provide some sort of send/receive pair, it is possible to impose
this particular interface on a wide variety of transport protocols. The specification of the destination
is generalized using the PEER signature described in Figure 3.5; this allows for differences in
representation among different protocols and protocol implementations. For the rare transport
protocols unable to construct the necessary operations, it is possible to treat unsupported operations
specially using the SML exception mechanism 5 .

The TRANSPORT signature exports the type msginfo, which is an abstract type with a rep-
resentation private to each implementation. It is used to hold whatever relevant information the
implementation requires to facilitate the message transmission: some possibilities are sender or re-
ceiver address representations, or connection state (in a connection-oriented protocol). The message

3Unfortunately, this approach could potentially confuse an unwary user by raising a runtime exception for what is
technically a type-safe, supported operation.
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- structure Rpc_S = Rpc (structure RPeer = MyPeer
structure Buf Buffer
structure Tran Sockets);

- structure RpcM = Rpc (structure RPeer = Peer ()
structure Buf = Buffer
structure Tran MachIPC);

Figure 3.8: RPC Functor Instantiation

The functor parameters are structures which have been instantiated prior to binding; this can be done
independently ofthefunctor insantiation, as with the structure MyPeer, or within the functor invocation

statement. as with the instantiation of the Peer functor within the Rpc 4 definition. Since MyPee r exists

independently of the Rpc-s structure, its exported types and values can also be accessed independently.

whereas the Peer object within Rpc -M is strictly local to that structure.

itself is represented by a buffer abstraction type bu f, which is exported from the Buf fe r module.
The TRANSPORT, PRESENTATION, and RPC signatures all specify the same Buffer. buf type
as the message representation, although it is still possible to incorporate arbitrary (existing) transport
and/or presentation packages using other message representations by using "wrapper" functors to
convert the type representation to the specified format. This level of type checking will be performed
at functor instantiation time.

The signature exports two exceptions, Msg and TimeOut. Msg is raised if there is some
problem with the message itself, and TimeOut is raised if there is a problem with the connection
path to the remote peer. The transport signature also exports the same Peer structure as the RPC
signature.

The create- routine converts a destination specification into the representation used by the
particular transport implementation, and returns a msginfo object encapsulating the relevant
information. Specifying the argument to create as a dest list provides an additional degree
of flexibility: in particular, it allows the specification of entire destination groups for multicast or
broadcast communication.

3.3.4 Presentation

The function of the presentation module is to translate data from its local representation to a
representation suitable for communication. This almost always involves linearizing data by replacing
references with the referenced data, and in a heterogeneous environment often also requires byte-
swapping operations to translate between different machine representations. Other operations are
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signature TRANSPORT =

sig
type msginfo
exception msg
exception TimeOut
structure Buffer: BUFFER
structure Peer: PEER

(* state management functions *)
vat create: Peer.dest list -> msginfo

val connect: Peer.dest list -> msginfo
vat bind: Peer.dest list * msginfo -> unit

vat destroy: msginfo -> unit

(* transmission functions *)

Val rpc: msginfo -> Buffer.buf -> Buffer.buf

(* (destination, local-port) -> msg -> unit)

val send: Peer.dest list * msginfo -> Buffer.buf -> unit

(* may signal TimeOut *)
vat recv b: msginfo -> msginfo * Buffer.buf

vat recv nb: msginfo -> msginfo * Buffer.buf

end

Figure 3.9: Transport Signature
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protocol and implementation dependent, as is the final form of the processed data. Some protocols
always convert data to and from a specified external representation language, while others may
use negotiation to determine the appropriate format for a particular transmission or communication
session.

The SML/NJ compiler does not have a mechanism fcr maintaining runtime type information at
the current time, although there are plans to include support for a dynamic type in a future release.
To temporarily get around the runtime type information problem, type information is encoded by
tagging data with the appropriate constructor of an exported datatype definition. The set of
available specifiers will not support the full range of possible types, but it is flexible enough for
the purposes of the case studies. The type definition is available as an independent SML structure
(see Figure 3.10), which can be imported as a functor parameter by any functor requiring the type
definitions. In addition to the enumerated type, it exports and exception Type which can be raised
when any type-related errors are encountered.

signature PTYPES =

Sig
exception Type
datatype T UNIT I INT of int I STRING of string

I BOOL of bool I REAL of real I LIST of T list
ARRAY of T array

end

Figure 3.10: Transmissible Types

The basic operations of the presentation module are marshal and unmarshal. marshal
translates language types, enumerated by the exported type T, into values of type xrep suitable for
combining into an outgoing message; unmarshal translates xrep values back into values of type
T.

The function open msg initializes the state for unmarshaling an incoming message: it takes
the message as a parameter, and returns a value of type xrep that is used in subsequent calls to
unmarshal. end-message takes a list of marshaled representations of type xrep and composes
them into a single object of type Buffer .buf, ready to transmit via the transport protocol.

3.3.5 Client and Server Stub Modules

The translation of the application's local call into a remote communication occurs in the stub
modules. The stub modules provide the interface between the application and the RPC system, and
are responsible for invoking the appropriate presentation and transport operations for each application
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signature PRESENTATION
sig

type T
structure Buffer : BUFFER
type xrep
exception UnknownType
exception EndOfMe ssage

val open msg: Buffer.buf -> xrep
val endr_msg: xrep list -> Buffer.buf

val marshal: T -> xrep
val unmarshal: xrep -> T

end

Figure 3.11: Presentation Signature

request: they apply any necessary transformations to the data (parameters), invoke the remote call by
sending the appropriate message to the server, and decode any reply values before returning them to
the application. In a production system, these stub modules would be automatically generated from
the application interface specification and perhaps some user-specified protocol information. Stub
generators avoid the tedious process of regenerating the encoding and decoding routines for each
new application routine, and help to avoid programming errors in the low-level data manipulations

required for remote communication.
To demonstrate the structure of the client and server stub modules, we consider a simple database

application with the signature shown below:

signature DB
sig

type vtype
exception NotFound
val store: string * vtype -> unit
val lookup: string -> vtype

val delete: string -> unit
end

The database server exports an abstract type, vtype, the exception NotFound, and the three

operations store, lookup, and delete. Most of the protocol-specific information, such as
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the composition of the application header (the application-level information passed to the server
which specifies the client request), is encoded in the stub routines. If a stub compiler is used, this
information could be provided as input dynamically, or selected from a set of known definitions.
If we configure a system using the RPC package, a stub generator would need to produce four
modules: an augmented server signature to be exported by the client stub, a functor implementing
the client stub, a server listen-loop signature, and the server stub implementing the listen-loop and
the relevant server stub routines.

The client stub implementation would export the augmented server signature, which is generated
by simply prepending a connection argument to each server routine:

signature DBCLSTUB =

sig
type con
type vtype
exception NotFound
val store: con -> string * vtype -> unit

val lookup: con -> string -> vtype
val delete: con -> string -> unit

end

As we can see in Figure 3.2, the client stub module depends on a number of other modules. The
stub implementation can access these supporting modules as functor parameters, and use them in
the type, variable, and procedure definitions in its implementation. Figure 3.12 shows a possible
partial implementation of a client stub module for the database server.

The client stub code for a call to store would follow a basic pattern: it would marshal the
message header and any parameters, compose the result into a message of the appropriate type,
send the message, and wait for and unmarshal a reply. The marshaling and unmarshaling operations
require calls to a presentation module, which is one of the stub module's parameters. The sending
and receiving involve calls to the RPC module, a second parameter. For a simple application
header consisting of string representing the operation name and an integer representing a uniquifier
(generated by the function next unique), the client stub code for the store operation might
look as follows:

The stub operation above is simplified for clarity. The implementation details are not constrained
by the signature. For example, the stub might have additional parameters which provide various
authentication or encryption functionality, or other functions relevant to a particular application.

On the server side, the top-level module is the server stub functor which contains the server
listen-loop. The functor implementation contains a dispatch routine and marshaling routines for
each operation exported by the server signature, but only the server listen-loop is exported by the
signature. While the client application is parameterized by the stub, the opposite is true on the server
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functor DbClientStub (structure Pres : PRESENTATION
structure Buf : BUFFER
structure Peer: PEER
structure Rpc : RPC
structure Types : PTYPES)

DBCLSTUB =

struct
type con = Rpc.rpc_port
type vtype - Types.T
exception NotFound
open Types

< stub body >
end

Figure 3.12: Client Stub Functor Definition

The type con is defined as an Rpc. rpc -port, and the type vtype is defined as a Types. T. The
keywond open is used to make the make the identifiers from the signature of the named structure available
without the need to use the'.' notation: in this case, it makes it simpler to use the type constructors in the
body of the functor

side: the server stub functor is parameterized by the server application module, since the application
routines are invoked as a result of receiving a client request.

The store routine in the server stub is basically a reverse implementation of that in the client
stub. It unmarshals its arguments, invokes the appropriate application operation, and returns the
marshaled the result, if any.

The listen-loop will then pass the marshaled response back to the RPC package, and it will make
its way back through the system layers until it is returned to the client application routine in the
appropriate form.

3.4 Discussion

As might be expected, the ML-RPC package provides roughly the same functionality as that of any
other RPC package. Using the language mechanisms of SML, however, ML-RPC is able to achieve
much of its functionality in a more flexible and consistent way by taking advantage of the language
mechanisms provided by a high-level language.
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fun store con (key, data)
(Rpc.rpc con

(MSG (Pres.end-msg

[Pres.marshal (STRING "store"),
Pres.marshal (INT next-uniqueo),
Pres.marshal (STRING "key"),
Pres.marshal data]));

0))

Figure 3.13: Sample Client Stub Code for store Operation

The store operation is a curried function which takes a connection and a tuple consisting of a key and
a data object. One possible implementation marshals the message components in place and passes the
marshaled message to the Rpc structure. The application header in this case is composed of a string
operation name (used as the dispatch argument by the server stub) and an integer uniquifier Tbo stub
marshals the application header and each of the arguments, composing then composes them into a list
which it passes to Pres. end msg after applying the constructor MSG. Since store returns unit,
the value of the Rpc. rpc call can be ignored, and the return value of the function is the value of the final
statement, which is the special symbol () which represents unit. Another possible implementation
might construct an appropriate marshaling function and pass the function itself to the RpC structure
(using the constructor FN rather than MSG).

signature DBSRVSTUB =

sig
exception NotFound
val db server : unit -> unit

end

Figure 3.14: Server Stub Signature
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functor DbSrvStub (structure TType: PTYPES

structure Pres: PRESENTATION
structure Rpc: RPC
structure DbSrv: DB

sharing Rpc.Buffer = Pres.Buffer
and type TType.T = Pres.T = DbSrv.vtype)

DBSRVSTTB =

struct
exception NotFound

< private declarations and definitions >

fun db server () =

let
val pid = 1467
vat p = Rpc.create [D rpeer = (HDEFAULT),

rport = (PID pid) I

fun loop () -

let
val (replyto, msg) = Rpc.recvreq p
vat resp =

case msg of
Rpc.MSG m => dispatch m

I Rpc.FN f => dispatch (f()
in

Rpc.sendresp

replyto (Rpc.MSG (Pres.endmsg resp))
end

in
loop ()

end

end

Figure 3.15: Simple Server Loop

The cases of the SML case statement are matched by pattern matching the value of the given expression
with the patterns of each case. In the process of making the match. SML will also assign values to
temporary variable corresponding to the structure of the matched type. For example, since the Msg type
is definedas either a MSG of Buffer.buf or a FN of unit -> Buffer.buf, the case statement
here not only distinguished between the two choices but also binds the local variables rn or f for use in

the corresponding arms of the case statement.
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fun dispatch msg =

let
val mb = Pres.open-msg msg
val (opn, u) = unmarshalheader mb

in
case opn of

"store" => store mb

I "delete" => delete mb
I "lookup" => lookup mb
I => raise NotFound

end

Figure 3.16: Server Stub dispatch Routine

fun store mb =
let

Val (STRING k) = Pres.unmarshal mb
val data = Pres.unmarshal mb

in
(DbSrv.store (k, data);
[Pres.marshal UNIT])

end

Figure 3.17: Server Stub store Routine

SML pattern matching can also be used in local variable assignment within a let statement, as in the
store routine above. Pres. urmarshal returns a PTYPE. but in cases where the expected value is
known we don't really care about the tag but want to be able to directly manipulate the value. Since the first
argument of the store function is defined to be a string, we can combine the steps and bind the untagged
value to the local variable. This constraint is imposed by the application, and not by the language: strictly
speaking, the result should be tested for unexpected values before the variable binding in order to avoid
the possibility of runtime errors, but the test has been omitted for simplicity of presentation.
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Figure 3.18: High-level Language Features in ML-RPC

3.4.1 Layering

The RPC case study makes extensive use of layering abstractions. The main goal is flexibility,
in several senses: reconfiguration, extensibility, module re-use, and ease of use (transparency to
applications).

An important step in designing a customizable system is in identifying a modular breakdown of
the functionality. Isolating functionality that is likely to be customized into small- to medium-sized
modules with well-defined interfaces greatly reduces the effort required to implement and substitute
alternative functionality.

The most crucial functional units in an RPC system are the presentation routines, which convert
program data to and from a transmissible format, and the transport routines, which transmit the
data. RPC systems may also incorporate various other functional units, such as those providing
authentication, security, or reliability functions, or perhaps even some form of application-specific
transformation. Although the basic functionality of any RPC package will be fairly constant, there
are many reasons for preferring different marshaling strategies, external representations, transport
protocols, or security mechanisms for particular applications. Therefore, a partial definition of
flexibility for an RPC package is the ability to support multiple implementations of key functional
units.

Reconfiguration

Configurability is based primarily on the parameterized module system. The paramettrized modules
provide a kind of higher-level polymorphism, allowing the module implementations to vary but
keeping the interfaces fixed. This approach allows different protocols to be represented as multiple
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implementations of the same signature. Because the module system is parameterized, the available
set of modules can easily be recombined at link time to provide the desired combination of protocols
and features: a particular functor parameter can be assigned different module implementations
much as a procedure parameter can be assigned different values. A useful feature of a parameterized
module system is the ability to easily modify a functor or structure's name and/or interface by
"wrapping" it in a new functor with a new signature: this makes it easy to compensate for slight
variations in the interfaces (signatures) of the base modules, increasing the re-usability of the code.
Furthermore, since only the signatures are fixed, extending the set of available protocols does not
affect the overall design of the system at all.

A system implemented in any programming language can maintain libraries, but for reconfigu-
ration to work properly the exported signature for each alternative implementation must be the szine.
This can cause naming conflicts in many languages if the different implementations are co-located
within the same library or application. The parameterized module system in SML allows a functor
or structure implementation to be bound as a parameter to a local identifier within the scope of
the functor being instantiated, making it clear which module is being referenced when a particular
routine is invoked.

As an example, consider the Tran parameter of the Rpc functor. The basic transport signature
used in the RPC case study is shown in Figure 3.9. Because of its generality, it can be used as
the basis for most higher-level transport protocols, such as RPC or message passing. As long as it
exports the signature specified by the Rpc functor definition, the impl-mentation of the structure
assigned to the Tran parameter is arbitrary. Furthermore, assuming the same basic functionality, it
is straightforward to provide a wrapper structure which converts an existing module signature into
the specific signature required. This means that existing packages can easily be adapted for use
in the RPC package structure. To model an RPC signature with a message passing structure, for
example, one could construct a routine rpc which first invoked Mp. send and then Mp. receive.

For example, one of the transrorts used in the RPC case study is an SML interface to TCP sock-
ets. The ML-Sockets signature exports an interface to a large portion of the UNIX socket system
calls. Mapping the functionality to the specified transport signature requires packaging the relevant
functionality into the appropriate routines, and effectively eliminating the rest. Consider the fol-
lowing non-blocking receive operation (see Figure 3.19) from a functor exporting the TRANSPORT
signature and parameterized by a SOCKET signature. The function header automatically decon-
structs its argument, which is of type msginfo. It checks whether there is a message available on
the specified socket: if not, it raises the exception Msg, and otherwise it invokes the standard socket
call recvfrom, and uses the return value to construct its own result. Since the Mach IPC signature6

also provides the base functionality to construct an implementation of the above interface, it could
be transformed in a similar fashion.

Although functor parameters are bound at link time, a certain amount of runtime configuration

6implemented by Fritz Knabe.
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functor TranDSock ( structure Peer : PEER
structure Sock : SOCKET)

TRANSPORT =

struct
type msg4nfo =

,conn: Net.fd, address: Net.address option;

< more functor body >

fun recvznb iconn = c, address} =

if (not (Sock.read-ok c)) then raise Msg
else

(let
val kmsg, rep-yt) = Sock. rec-ifrcm - < ...

in
('ccnn = c, address = (SOME replyto) , msg)

end)

Figure 3.19: "Wrapper" Functor for Sockets

is still possible. A stub could import n different communication packages, and allow each ca!l to
specify the desired protocol by choosing the appropriate datatype constructor. Alternatively, taking
advantage c . first-class functions, the application level could import the relevant protocols and
assemble each into a record of protocol routines. The appropriate structure could then be chosen
dynamically by the application, and passed as an argument to the stub routine,. Unlike similar
strategies in conventional programming languages, such function records woula be as type-safe as
any other part of the language.

Extensibility

This particular package provides fixed signatures for the RPC. PRESENTATION, and TRANSPORT

modules. It provides implementations of each of these, although the implementations are intended
as the basis for a library of alternatves rather than as canonical implementations. The package
also provides some support modules for tying together interface types: PEER. for representing the
remoic peer, BUFFER, for representing the message structure, and PTYPES. for representing the

"Although the total set is still fix d at link time by the application parameter bindings, from the point of view of the
stub module the choice is strctly dynamic.
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tagged set of transmissible types. A production system would also include a customizable stub
generator.

The stub routine is parameterized by structures exporting the TRANSPORT and PRESENTA-
TION signatures, as well as any other modules desired (e.g., structures exporting encryption and
checksum functions, if they exist, or perhaps a lightweight thread package). Since the stub routines
coordinate the message processing before and after transmission via the RPC package, they are free
to apply whatever transformations they likes to the data as long as it is in the correct format for
each specified interface. Note that the structure of the code is not targeted for any specific set of
modules. The stub generator need only ensure that any particular client/server pair supports identical
or complementary encoding and decoding schemes. Adding a new module implementation need
only involve those applications actually using it. For example, if a new client wanted to use a new
external representation format, only the servers with which it wanted to communicate would need
to be modified. Any existing clients would be unaffected by the extension.

Module Re-use

There are of course many other modules used for the various concrete implementations. These
can be strictly independent, but since many such designs use the same basic abstractions it makes
sense to share the underlying modules wherever possible. This is sensible because it avoids the
programmer overhead of re-implementing heavily used program fragments- it also makes it more
likely that the shared code will have fewer bugs and be more efficiently implemented than single-use
code because of its longer lifetime and wider use. This approach also simplifies the effort required
for extensibility, since it is likely that most of the underlying abstractions required for any particular
protocol will be available in the system library.

The naming hierarchy imposed by the functors simplifies the re-use of existing code. Imple-
mentors often want or need to use existing implementations of various program blocks in their
systems. Sometimes the interfaces won't match exactly; sometimes the interfaces will match, but
the functionality of a particular routine won't be quite right. This can cause virtually insurmount-
able problems in an environment where, for example, all procedure names are global, but it is a
straightforward task in SML. The programmer could simply implement a new functor exporting
the expected interface, and provide the existing (old) module as a parameter. The new functor
can then use the old implementation, and any other desired parameters, to produce output in the
form required by the caller. Furthermore, the new functor also provides a new level in the naming
hierarchy, avoiding any problems with reusing routine names or interfaces.

It is also possible to take an even broader perspective. The client/server model has proven to
be a successful paradigm for developing distributed systems, but it is certainly not the only choice.
Most communications packages are composed of the same basic functional units as RPC. so there
is no reason that the same building blocks can't be configured into any number of other protocols.
For example, constructing a message passing protocol need only be a matter of writing the signature
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and implementing it as a functor making calls to the appropriate RPC support modules.

In principle, of course, module re-use is not restricted to high-leve! languages. In practice,
however, complications such as adjusting interfaces, coordinating variable names, and deciphering

type representations tend to prevent this sort of sharing except within fairly tightly-knit organizational
groupings.

Transparency

It is generally agreed that transparency is a priority for most distributed systems. Except for providing

a logical handle with which to specify a remote peer, it is generally easier on the programmer if
the interaction appears to be local. A common technique is to have a mental model of a distributed
system as a non-distributed application with a communication package layered in between the peers.
The ability to pass first-class functions, or closures, across an interface makes layering per se much

less onerous than in conventional languages. A closure may encapsulate an arbitrary amount of

"knowledge" about the internals of a particular layer. If this closure is passed to another layer
and invoked there, the modularity of the system has not been compromised, yet one achieves the

enhanced performance effects of "layer collapsing".
An important benefit of the layeritg approach is that it encourages modularity of design. When

this modularity is further supported by a parameterized module system like that of SML, each layer
automatically gets all the protection of type safe encapsulation for all of its internal variables. This
means that each module may safely have an independent set of names without worrying about the

naming schemes of other modules, and know that the representations and values of its local objects
are safe from malicious or accidental modification from outside its scope.

There can be some additional overhead involved in adding layers to a system, but if the mapping

is straightforward the compiler will often be able to optimize much of it. For example, if a procedure
implementation in one structure simply invokes a corresponding procedure in another structure, the
compiler will be able to optimize out the intermediate procedure.

By designing and implementing at a higher level, we have a better opportunity to customize
the evaluation strategy to the expected data usage patterns. Our simulations demonstrate that
a functional programming language, and in pa:dcular the use of first-class functions, provides an
attractive environment in which to implement layered communication software. First class functions
unify control and data flow, providing a much more flexible interface between program modules
than with conventional programming languages. The flexible interface means that the integrity of a
module can be maintained without unnecessarily limiting the amount or form of the data that must
cross its boundaries.
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3.4.2 Evaluation Strategies

The client application has the power to customize features at a per-call granularity. Depending
on the high-level design of the stub module, different classes of remote calls could be processed
by different security procedures, or an application can choose to use RPC for one operation and
message passing for another. Another possibility is to associate a set of marshaling functions with
each RPC connection.

To constrain a set-of choices, the programmer can define a datatype with a constructor for each
supported option. Another solution is to allow for a function argument with a specified interface. For
example, the client stub routine could compose a encryption function to the return value provided by
the presentation module. SML's facility for constructing anonymous functions dynamically makes it
easy to convert any function into a function of no arguments by constructing an anonymous closure
on-the-fly. The missing marshaling code (marked by the ellipsis) can be found in Figure 3.13.

val pres_fcn = fn () =>
(E.encrypt (Pres.end_msg
[Pres.marshal ...

Rpc.rpc con (FN presfcn)

< ... >

The SML keyword fn is a function specifier. similar to the A construct in the A-calculus, which can be
used to construct an anonymousfuncdon. The above construction assigns the variable pres ..fcn to a
function of no arguments which applies the (predefined)function E. encrypt to the result of marshaling
the relevant parameters. Assuming that E. encrypt takes a Buffer .buf and returns a Buffer .buf
containing the encryptedresult, pres-fcn can be provided as afunction parameter to Rpc .rpc.

Functional programming languages and first-class functions also provide support for fine-grained
parallelism. Functional programming style encourages small, self-contained functions; closures
ensure a well-defined execution environment. A parallelizing compiler should be able to easily
exploit this structure, or it could be done more explicitly by the programmer using a lightweight
threads package.

Mechanisms like parallel RPC are one way to provide this sort of processing overlap. For
cases where the same message needs to be sent to multiple destinations (e.g. for replication,
or for distributed Linda tuple-space), providing a call with parallel semantics allows both the
client setup processing and the network latency and server computation time to be overlapped.
Even if true multicast support is unavailable, this approach can result in significant performance
improvements [52].
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Another useful feature of SML is partial evaluation of curried functions. This can be particularly
useful in the context of an RPC system for keeping connections straight. If there are a few heavily
used routines, it is possible to bind the connection parameter of the function, and use the resulting
function directly with the remaining arguments. This can reduce programming errors from mis-
handling connection identifiers. Curried functions are particularly useful if it makes sense to bind
the arguments to values at different times. For example, it could be useful to curry an RPC function
which takes a connection identifier and a set of server arguments, since a client would tend to re-use
the operation many times with the same connection argument but different server arguments.

3.4.3 Type System

Strong typing is often a point of contention in programming language discussions. To type theorists
and language designers it is both ziecessary and desirable; to some systems programmers, it is the
bane of their existence. Since there is some validity to both perspectives, it has proven a difficult
issue to resolve.

Strong Static Typing

A strong static type system provides a well-defined, structured programming environment and can
greatly simplify the task of the programmer. It can provide the basis for proving theorems about the
correctness of programs; a language like SML can provide the framework for work on automatic
verification of program correctness. A sufficiently strong static type checking mechanism provides
guarantees about runtime type safety even in the absence of runtime type checking; a surprising
number of runtime type errors can be eliminated by strong static type-checking. In addition to
the usual careless mistakes and typographical errors, complex semantic or conceptual errors often
manifest themselves as type errors. Furthermore, enforcing the encapsulation boundaries of abstract
types increases the programmer's control over the local state, and therefore over the ultimate behavior
of the program.

An advantage of the static mechanism is that it provides strong guarantees without the cost of
dynamic (runtime) type checking. Although there are instances, such as the transmission of poly-
morphic types, where dynamic type information is indispensable, in general it is very advantageous
to be able to get such strong type guarantees and only have to pay the static cost, at compile and link
time.

Another advantage to a strong type system is that, since the module interface specifications are
an integrated part of the language, they can not diverge from the server implementation: they can be
reliably used as server specifications for the client and stub generator. The function of the signatures
is to fix the interfaces and maintain type safety while allowing evolution of the corresponding
implementations. This concept has even more relevance in distributed applications, where it is
impractical to assume that physically remote distributed system components will not continue to
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evolve. The language-integrated signature mechanism provides an unambiguous point of reference
"for otherwise independent components.

On the other hand, the fact remains that at the lowest level there can be no concept of type safety.
At some point, all data is reduced to a sequence of bits. As long as our type-safe languages are
built on platforms of unsafe lower-level systems, the need to manipulate the data and environments
outside of the type-safe boundaries requires some form of escape hatch from the type system. For
example, suppose an SML needs to invoke a UNIX system call. It can carefully construct a type-safe
representation of the necessary C types using an array of bytes, but when it receives the return value
from the system call it has absolutely no way of safely validating die type or format of the value it
receives. At this point, it must simply trust that the value is of the expected form, and coerce it to a
corresponding type within the type system of the language.

Systems programmers often find it necessary to communicate across the language boundaries
to various parts of the underlying system(s), and this is especially true in a distributed environment.
Not only must the language types be transmitted across language boundaries, but they must also be
linearized into a form suitable for transmitting across the network.

There is also the philosophical question of the meaning of type equivalence across address
spaces. How can we decide if types instantiated in different domains are equivalent? If we accept
that base types are equivalent, we can conclude that constructed types with equivalent names and
visible, equivalent structures are also equivalent. However, opaque types such as abstract types or
functions can not be reliably tested for equivalence.

The strong type systems of high level languages also introduce some complications in a dis-
tributed heterogeneous environment. Most existing static type systems can only provide their type
guarantees within the domain of a single address space or session. A distributed system necessarily
goes beyond those boundaries, but wants to retain the integrity of the type system as well. The type
guarantees cannot be absolute without the existence of a distributed implementation of the language
itself. Just as threads are coordinated by the top-level loop of the language, true distributed type
management would require a meta-top-level coordinator for the language instances composing a
particular distributed system.

A strong type system has many benefits, but the combination of a strong type system and
polymorphic or abstract types poses a major problem for a communication protocol which requires
structural information in order to linearize a typed object for transmission. A stub generator can
provide enough static type information to marshal arguments of known type, but the type of a
polymorphic parameter can be known only at runtime, and it is a violation of type safety for the
representation of an abstract type to be known at all outside of the module in which it was defined.
It should be noted, though, that the transmission problems are only with respect to types that are
unlikely to be supported at all in conventional programming languages.

Some of that complexity can be side-stepped if we are willing to trust a stub generator to the same
degree that we trust the implementation of the language or the operating system. If we can provide
a trusted stub generator which uses a signature file and an external representation format as fixed
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input, and if we are willing to trust the security and authentication mechanisms of our communication
system, then we can extend the type safety guarantees across the language boundaries.

Abstract Types

SML's distinction between interface and implementation provides a great deal of flexibility in
type-safe layering and configurability. However, in the domain of remote communication, this
same separation causes a problem for abstract types. Within the normal semantics of SML, the
implementation of an abstract type is unavailable outside of the module which defines it. However,
the opacity of the type representation provides some complex problems for remote communication.
The communication system needs to know the type representation in order to marshal a type instance
for transmission, but making the representation known outside of a particular implementation defeats
the purpose and benefits of an abstract typing mechanism. There is currently no way to transmit
abstract types within the current SML system, especially among heterogeneous machines, without
either subverting the type system or requiring additional information from the implementation at
stub creation time.

We chose to side-step the issue of transmitting abstract types in this implementation: other
work has explored solutions to the problem without yielding any completely satisfying solutions.
Although the case study does not address this issue in detail, we briefly sketch three approaches to
the transmission of abstract types: user-provided marshaling routines, proxy objects, and garbage-
collection-based linearization. We then outline an approach combining the first two of these ap-
proaches that would provide a simple extension to the existing RPC system.

One method is to require any module implementing a transmissible abstract type to provide
explicit marshaling and unmarshaling routines [39], preferably into intermediate-level SML types
rather than directly into transmission format. The system would then apply the standard transfor-
mations to the explicitly typed result. A variation of this idea is to provide type implementations
as well as module signatures to the stub compiler, and let it generate special-purpose marshaling
routines for each relevant abstract type. However, this variation has the drawback that, without
compiler modifications, there is no way of ensuring that the implementation provided to the stub
compiler is the same one that is linked into the final system.

Another approach is to simulate communication of abstract types. Rather than attempting to send
the objects, the system sends a unique handle for each one [36]. The handle is recognized as such
on the remote site, and any specific references to its structure generate a callback to the originating
site. This approach does not subvert the SML type system, but has the drawback that it can cause
arbitrary amounts of remote communication in a way that may be non-obvious to the application
programmer. In addition, if the motivation for transmitting objects is to allow computation to occur
on a remote processor, this approach invalidates the effort by forcing all computation involving
abstract types to take place on the machine on which they were defined.

A third approach is to use the SML garbage collector to do the linearization [46]. This has
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the advantage that it is relatively efficient and can handle any legal SML type. The disadvantages,
however, are that it will only work for homogeneous environments, since the data is treated as
opaque monolithic blocks; also, should the type implementations differ on the local and remote
machines, the heap on the remote machine may be compromised.

Probably the most reasonable compromise for a heterogeneous environment is a combination of
user-provided marshaling routines and proxy objects: this allows the implementor to decide which
types need to be transmissible for efficiency reasons. A special stub compiler could be provided
which automatically extends a particular type implementation with marshaling and unmarshaling
routines conforming to a particular external representation format. This compiler might take the
signature and functor implementation as input, and output an augmented functor, parameterized
by a fixed presentation interface, which uses the presentation routines to marshal and unmarshal
the representation in the functor implementation to and from the external representation format
associated with the presentation module parameter. The normal stub generator would assume the
existence of this augmenter, and would automatically assume the existence of the marshal and
unmarshal routines in the signature of any structure exporting a transmissible abstract type.

Polymorphism

Polymorphic types also provide a challenge to distributed communication. The problem of accessing
runtime type information for polymorphic types was highlighted in the process of implementing
the presentation routines for the ML-RPC package. SML has strong static type-checking, and it
does not currently keep around any runtime type information. In order to have access to structural
information at runtime, it was necessary to define a type consisting of a tagged set of basic types
(see'Figure 3.10), and use them to tag polymorphic types.

One approach to distributed polymorphism is to take the view that since it is only legal to apply
generic operations to polymorphic types, they can be considered opaque from the point cf view of
the remote pee- Then. the proxy object scheme applied to abstract types can be extended to include
polymorphic types as well.

The proxy object approach is not acceptable if distinct instantiations of a particular signature
in distinct address spaces are to be treated as the same type. Although this is technically illegal
from the point of view of the SML type system, this is a logical extension based on the notion of a
distributed system as distributed fragments of a single conceptual system. Although it is possible
to get around the problem by constructing type tags and applying them to types as clues for the
presentation routines, there is fundamentally no substitute for language supported dynamic type
information.

Although the tagged-type approach was used in the case study implementations, it is not rec-
ommended. Rather, high-level languages should incorporate the capability to specify that runtime
type information should be maintained for designated objects. In fact, there are plans to add a new
dynamic type to SML/NJ that will fill this function. Implementations of communications software
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should not be attempted lightly in strongly typed languages which do not incorporate language
support for runtime type information.

3.5 Conclusion

A strong type system introduces some complexities into distributed communication, but it also adds
a lot of power in terms of predicting program behavior and providing correctness guarantees. In
conventional languages, it is rare to have any reliable correctness guarantees even for non-distributed
systems. A strong static type-checking mechanism guarantees runtime type safety for non-distributed
programs, and can provide a basis for limited reasoning about distributed correctness as well. This
means that programs do not have to pay a price at runtime to ensure correctness. Systems programs
in conventional languages often "optimize" away the runtime type checks, but when they do opt for
type safety they must pay the price at runtime. The runtime performance price is also relevant in
the domain of language supported exceptions versus dynamically checking function return codes at
runtime; programming with exceptions does not exact a performance price in the normal case.

We can see that features like language supported encapsulation, when supplemented with strong
static type-checking, are particularly well-suited to distributed systems programming where modu-
larity is a reality imposed by the distribution rather than simply good programming practice. The
ability to reason about the behavior of modules in isolation from the rest of the system is crucial to
effective distribution, and the reliability of encapsulation for reasons of name and data security is
essential for any sort of accessible modular reconfiguration.

Distribution also brings to the surface many hidden assumptions about environment sharing.
In a truly distributed system, it is impossible to ensure that each distributed component maintains
exactly the same environment even within the language domain. For many operations associated
with remote communication it is essential to consider the environment as part of the transmissible
data; most conventional languages do not even have a notion of environment.

Autonomous administrative domains and the inevitability of independent program evolution
make it imperative to have an interface specification mechanism that is fully integrated with the
language. The integration provides as least some limited guarantees preventing the interfaces to
diverge from the implementations.

The RPC case study illustrates the efficacy of applying high-level language support to the issues
involved in constructing a type-safe distributed communication system.
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Chapter 4

ML-Linda

4.1 Motivation

The Linda programming model attempts to provide a simple interface to medium- to coarse-grained
parallelism and interprocess communication primitives, but at the same time isolate the application
programmer from the complexities of systems programming. Linda models data as tuples, or
ordered collections of typed values, and communication as data movement in and out of an abstract
tuple-space; this unifies the primitives for data and control by transforming communication issues
into a location-independent tuple-matching process.

The Linda case study was chosen to provide an example of a system with the goal of providing
applications a simple but powerful interface which hides the complexities of communication and
parallelism. The ML-Linda design demonstrates how easily high-level language mechanisms can be
used to support this kind of parallelism and programming model. A parameterized module system
provides a safe, flexible framework for a natural layering of system modules, making it simple to
construct multiple system configurations from a set of basic modules. The eval operator, which
provides explicit parallelism by evaluating its active tuple argument in a separate process or thread of
control, has been problematic in most Linda implementations because of the difficulty of accessing
free variables; however, it can easily be supported in a language with closures because free variable
bindings are preserved automatically 1 . The NIL-Linda case study was also intended to illustrate how
easily a well-known application such as Linda can be implemented in an advanced programming
language, and how much additional implicit flexibility such an implementation can provide.

"This doesn't adapt to distributed Linda without a function transmission mechanism, of course, but the same is true

for an implementation in any language.
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4.2 Linda Overview

Linda is a programming language extension which consists - a set of high-level operations that
can be added to a base language to yield a parallel dialect ox that language [10, 23]. The Linda
programming model consists of tuple objects, an associative memory called ruple-space, and a set
of operators which act on tuples: out, eval, in, rd, and the predicate operators inp and rdp.
The unit of communication is the tuple, an ordered collection of typed values. Tuple elements can
be either formals or actuals. Formals match elements of arbitrary value but fixed type; actuals
specify both a type and a value for the match. There is also a special wildcard formal which matches
elements of any type.

All communication and synchronization in the Linda model is accomplished by moving tuples
into and out of tuple space. A Linda program selects a tuple by specifying another tuple as a template
to be matched against the contents of tuple space. If tuple space contains more than one matching
tuple, a nondeterministic selection is made2 .

The out and eval operators both add tuples to tuple space: out adds a passive data tuple to
tuple-space, and eval adds an active tuple to tuple space. The eval operator introduces explicit
parallelism by causing the active tuple's fields, some of which may contain arbitrary expressions, to
be computed by an independent process. Once all the fields of the active tuple have been evaluated,
the tuple is added to tuple-space as a conventional passive tuple.

The rd and in operators are both used to access tuple-space data. The rd operation is similar
to a lookup operation: it uses the Linda matching algorithm to match a specified template against
the contents of tuple-space and returns the result. The in operation is a destructive version of
rd.: the matching tuple is removed from tuple-space. The matching algorithm is guaranteed to
return a match if one exists; if there is more than one match, the choice is nondeterministic. The
elements of the matching tuple are automatically bound to any corresponding formal parameters in
the template argument. Both rd and in are blocking operations; if no match is found, they will
remain blocked until a matching tuple is added to tuple-space. The predicates inp and rdp are
nonblocking versions of in and rd.

Linda has been implemented for several programming languages and hardware platforms, in-
cluding various multiprocessors as well as workstations on a local area network (LAN).

4.3 Design and Implementation

4.3.1 ML-Linda

The ML-Linda [54] case study shows how the language mechanisms embedded in SML naturally
support the Linda implementation and programming model. ML-Linda provides a flexible, ex-

2The Linda tuple matching algorithm is defined in (62].
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pressive environment for implementing distributed systems by combining Standard ML's powerful
type system and support for functional programming with the Linda model of parallel program-
ming. Linda's shared distributed tuple-space complements the functional programming style by
providing a natural mechanism for maintaining shared global state; furthermore, the implementation
does not require a preprocessor or any compiler modifications. The system also provides location
transparency for tuples, and all necessary synchronization.

Figure 4.1: Local Linda Configuration

The multiple layers of the implementation provide a framework for exploring issues of flexible
configuration, especially when considered in combination with the choices of the communication
layer. The main modules in ML-Linda are the Linda front-end, client distribution, communication,
server distribution, and tuple-space modules This modular approach permits the construction
of multiple system configurations by different compositions of ._he individual modules. A local
ML-Linda configuration connects the front-end directly to tuple-space (see Figure 4.1); a remote
configuration binds the front end and tuple-space modules to the corresponding client and server
communication stubs (see Figure 4.2); and a distributed configuration binds the front-end and tuple-
space modules to their respective distribution modules which in turn are bound to the appropriate
communication stub modules (see Figure 4.3).

4.3.2 Linda Runtime Types

ML-Linda supports the standard Linda operators3 with a slightly modified syntax in order to specify
nmtime type information for transmission and for the Linda match algorithm. SML uses a strong
static typechecking mechanism, and does not maintain runtime type information. In order for the
tuple matching algorithm to work, the Linda system must have access to runtime type information
on tuple-space fields. Because of SML's current lack of runtime type information, the system uses
a SML datatype with constructors functioning as tags4 (see Figure 4.4).

The type-tagging datatype T supports integers, strings, booleans, lists, and pairwise combinations
of these, as well as the SML type unit. The PAIR constructor functions like a cons operator: it

3 The syntax of the in call had to be changed slightly because of a conflict with the SM!.. keyword.
'This results in some limitations in tuple-space field types, but they are mainly related to issues of transmitting abstract

types and are problematic in any distributed Linda implementation.
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signature LINDA-TYPES =

sig
datatype T = UNIT I INT of int I STRING of string I

BOOL of bool I PAIR of (T * T) I LIST of T list I

INT FORMAL I STRINGFORMAL I BOOL FORMAL I WILDCARD

FN of unit -> T list

end

Figure 4.4: ML-Linda Types

The datatype keyword indicates a complex type composed of a discriminated union of type constructors.
which may in turn take arbitrary parameters. The constructors of this particular type are public, since
they are enumerated in the signature; for abstract types, the datatype definition is restricted to the
implementation, and the type keyword is used to name the type in the signature.

,rovides the ability to construct complex structures or lists. The FORMAL constructors are part of
the Linda syntax for specifying a match to an arbitrary value of the specified type; the WILDCARD
matches an arbitrary value of any legal type. The FN constructor, which is used to tag function-
valued objects, is restricted to arguments of the eval operation 5. Additional language constructs
such as structures, arrays, and lists can also be added explicitly to the union, but the smaller set
suffices for the purposes of illustration 6.

[STRING "hello", INT 5, BOOL true, WILDCARD)

Figure 4.5: An ML-Linda Tuple

A Linda tuple is represented as a list of these tagged types (see Figure 4.5). A tagged type
is constructed by applying the desired constructor to a value of the appropriate type, e.g. INT 5.
Tuples can be of arbitrary size, making an SML list a natural representation which maintains the
necessary properties of Linda tuples and still allows a fixed interface. In addition to a set of basic
language types, the special Lindaformal types and wildcard are also supported.

5This restriction is due to the inability of the current system to transmit functions.
6A forthcoming version of Standard ML of New Jersey will support dynamic (runtime) types: this may allow us to

simplify our Linda interface.
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signature TLESPA2 =

sig
structure LTypes: LINDA TYPES

exception Type
exception NotFound

val .nit: string _ist -> un'.t

(* tuple -> unit v)

val out: LTypes.T list -> unit
val eva!: LTypes.T list -> Unit

(* template -> tuple *)
val rd: LTypes.T list -> LTyves." list
val 1 in: LTpves.T liAst -> 'yves.T list
val rdp: LTypes.T list -> LTyoes.T list
val inp: LTypes.T list -> LT'rpesT list

end

Figure 4.6: Tuple-Space Signature

4.3.3 Linda Front-End

The main part of the ML-Linda interface is the specification of the Linda tuple-space operators (see
Figure 4.6). The Linda front-end exports the same interface as tuple-space, so it does not require
a separate signature. In fact, all operations but eval are forwarded directly to the corresponding
operation of its Tt TupleSpace parameter.

The out operation takes a tuple. or Lfypes. ' list, stores it in tuple-space. and returns
-nit. This operation can be viewed as a data storage operation. or as a message send in the
communication domain. The first field of a tuple is often used as an addressing tag.

The eval operation takes a tuple with some fields optionally containing the special FN
constructor7. The eval operator is provided to allow explicit control of parallelism. Its semantics
is to create an independent process, or thread of control, which is responsible for evaluating any
expressions in the fields of its active tuple argument, and depositing the result into tuple-space,
The location of the active ruple should be transparent to the application; the call to eva ! should be
non-blocking. Logically the active tuple enters tuple-space immediately, but by Linda semantics it

cannot be matched until it is fully evaluated. ML-Linda implements eval as a separate thread of
7This constructor is illegal except within aruple provided as an argumenito eval, because in the ab';enceof afunction

transmission facility it creates a discrepancy between the local and remote configuratons.
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control in the address space of the spawning application. this provides the correct semantics in the
absence of a remote function transmission facility. The operation forks a thread which constructs a
new ruple by substituting for each FN constructor the result obtained by evaluating the corresponding
function-valued argument.

The remaining four operators are for accessing tuples, and they all have the same interface: they
take as parameter an LTypes. T list representing a matching template, and nondetermnmistically
return a tuple from tuple-space which matches it. The differences in the four operators are semantic:
the rd and rdp operators are read-only operators: they do not modify the state of tuple-space. The
in and inp operators remove the matching tuple from tuple-space as well as returning it to the
caller. The predicate operators rdp and inp are non-blocking. If a match is not found, they will
raise an exception. The non-predicate versions will block indefinitely until a tuple match is found.

The eval operation is impleniented by forking a thread on the client to evaluate the active tuple
and then output the result to tuple-space (see Figure 4.7).

ML-Linda also exports an initialization routine, taking as argument a string list, which causes
tuple-space to initialize its internal state. In the remote or distributed configuration, the argument
can be used to specify the remote tuple-space node(s).

4.3.4 Tuple-Space

Tuple-space is a logical associative memory that is shared among a collection of Linda clients.
Tuple-space exports the same operators as the Linda front-end (see Figure 4.6), although in the
absence of a function transmission mechanism the eval operator is implemented strictly as a
client-side mechanism.

The main functions of tuple-space are tuple storage and matching. Tuple space is represented in
ML-Linda by a hash table of tuples. Since a tuple-space module can have multiple clients and may
be multithreaded, the implementation provides appropriate synchronization and locking on shared
data structures. Array slots are locked for out and in/inp operations, but not for rd/rdp. This
serializes all out and in operations, and is consistent with the guarantees provided by the official
Linda specification.

Tuple matching is the only method of communication in a Linda system, and it is available in
both destructive (in) and nondestructive (rd) forms. The tuple matching routine implements the
matching algorithm described in Whiteside [621. The combination of recursion and SMIL's internal
pattern matching facility with the necessary type information from the datatype constructors makes
it quite straightforward to implement.

Figure 4.8 contains the high-level matching algorithm for ML-Linda. The function match-tuple
breaks the possible combinations of argument representations into three cases:

* Both lists are empty. If we reach this case, either all previous template/tuple pairs have
matched, or both the template and tuple started off empty. In either case. we can consider this
a match and return true.
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functor LindaFE (structure TS: TUPLESPACE
structure SThread: THREADSYSTEM)

TUPLESPACE

struct
structure LTypes = TS.Types
exception Type
exception NotFound

val init = TS.init
val out = TS.out

fun eval tuple =
let

fun xlate elt=
case elt of

(FN fcn) => fcn ()
I it => it

in
Thread.fork (fn () =>

(out (map xiate tup)))
end

< more definitions >
end

Figure 4.7: ML-Linda Client eval Operation

The operators init, rd. l1in, inp, and rdp are simply translated directly into the corresponding
operators of the TS structure parameter The operations are defined with the keyword val rather than
fun because the definition in this case is simply binding the function named by. for example. TS. out to
the local identifier out.
The eval operation first defines a function. xlate, which, when applied to a tuple element, checks the
element type: if it is type FNi it returns the result of evaluating the associated function, and otherwise it
simply returns the element itself. The Thread. fork operation forks a thread to execute the the function
supplied as its argument. In this case, the function-valued argument is defined dynamically using the fn
keyword, which is analogous to the lambda keyword in Lisp.

The map operation is a basic list operator in SML. It takes two arguments, afunction anda list. and returns
a new list for which each element is computed by applying the function to the corresponding element of
its list argument Like most list operators. map is a polymorphic function: its list argument is type ' a
list, its function argument is type ' a -> ' b. and it returns a type ' b list. The specification can
accept any two types/for ' a and ' b. but enforces the constraints that the translation function input and

output match the types of the corresponding lists.

The forked thread will apply the out operator to the result of mapping the xlate operation to the tuple.
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(* returns true iff tuple (arg2) matches template (argi) *)

fun match tuple (nil, nil) true
I matchtuple (fl::tll, f2::t12) =

if match (f1, f 2) then match_tuple (tl!, t12)
else false

I match tuple (_, ) = false

Figure 4.8: ML-Linda Tuple Matching Algorithm

This codefragment represents the definition of theffunction match .tup le. The function takes two (tupled)
tuple arguments. A function definition in SML can be broken into cases rf the types of the argumentspermit
more than a single representation. For example, since the arguments to match _tuple are both lists.
each can be either an empty list ('[]' or nil), or a non-empty list which can be represented in the form
hd: :tl as the head of the list consed to the tail of the list- SML uses the reserved symbol :: to represent
the cons operator

The three cases are indicated in the function definition by successive function headers separated by the
reserved symbol I. The reserved symbol - is used as a wildcard for the SML pattern matcher, indicating
a value which does not affect the match parameters. The pattern match not only separates the arguments
into cases, it also binds the values of the specified parts of the patterns to the variable names provided. sc
they can be referenced in the body of the function.

The pattern matching has two effects. It binds the pattern components to local variables. and also functions
as a case statement which directs the control flow to the code segment appropriate to the structure of the
argumnent(s).
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" Both lists contain at least one more element. In this case, the match algorithm invokes the
routine match to compare the head of the template list with the head of the tuple list. If they
match, then it recursively invokes match-tuple on the tails of the two lists. If it does not, then
the template and tuple do not match, and the routine returns false

"* Either the template or the. tuple is empty, but the other is not. In this case, the tuple and
template are unequal in length, so a complete match is impossible: we abandon the match and
return false.

The element matching routine is also broken into cases using SML's pattern matching facility
(see Figure 4.9). In this routine, the argument representations vary according to the datatype
constructors. The rules for the element match are taken directly from Whiteside [62], as mentioned
earlier.

4.3.5 ML-Linda Configurations'

Simple Linda can be broken down into two major abstractions: the client interface comprising
the Linda operations; and tuple-space, which comprises the ruple storage and pattern matching
operations. Depending on the desired high-level configuration, we can supply various intermediate
modules which provide the necessary management.

Local Configuration

In the ML-Linda local configuration, the front-end and the tuple-space modules are linked together
directly as illustrated in Figure 4.1. The configuration is specified at the time the front-end module
is instantiated, by supplying a tuple-space structure as a parameter (see Figure 4.10).

Remote Configuration

As an extension to the model, suppose we want to have tuple-space act as a server, and support
multiple clients on remote nodes. In that case, we need to introduce a communications layer for
both the client and the server. The communications code can of course be integrated directly into the
implementation, converting the simple Linda implementation into a remote Linda implementation.
However, these modifications make the code unusable for the local case. Instead, suppose that we
design a communications module with the same interface as the tuple-space module. We now have
a set of modules that can be assembled into either a local or a remote Linda system.

The ML-Linda implementation follows a client-server model, with one or more individual tuple-
space nodes acting as remote servers to the local Linda client application. Most of specific details
of the communication layer are orthogonal to the ML-Linda implementation; any communication
package which supports the basic send and receive operations could be adapted to fit the linda
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(* actuals match if both types and values match *)

fun match (INT il, INT i2) = (il = i2)
I match (STRING sl, STRING s2) = (sl = s2)
I match (BOOL bl, BOOL b2) = (bl = b2)
I match (LIST 11, LIST 12) = matchtuple 12 12
I match (PAIR (tl, t2), PAIR (t3, t4)) =

(match (t1, t3) andalso (match (t2, t4)))

(* template formal matches with tuple actual *)

match (INT FORMAL, INT i) = true
match (STRINGFORMAL, STRING s) = true
match (BOOLFORMAL, BOOL b) = true
match (WILDCARD, INT i) - true
match (WILDCARD, STRING s) = true

match (WILDCARD, BOOL s) = true
I match (WILDCARD, LIST 1) = true
I match (WILDCARD, PAIR p) = true
(* template actual matches with tuple formal *)

match (INT i, INTFORMtAL) = true
match (STRING s, STRINGFORMAL) = true
match (BOOL b, BOOLFORMAL) = true

I match (INT i, WILDCARD) - true
I match (STRING s, WILDCARD) = true
I match (BOOL b, WILDCARD) = true
I match (LIST 1, WILDCARD) = true

match (PAIR p, WILDCARD) = true
(* and pairs of formals don't match *)

I match (_, _) = false

Figure 4.9: ML-Linda Tuple Matching Algorithm

61



- structure ts = TupleSpace (structure SThread = ThreadSys

structure LTypes = LTypes);
- structure Linda = LindaFE (structure TS = ts

structure Ltypes = LTypes
structure SThread = ThreadSys);

Figure 4.10: ML-Linda Local Instantiation

interface. We use the ML-RPC system described in Chapter 3. The communication structures
appear transparent to the application and server code because they export the same interface as the
tuple-space model. A functor instantiation for a remote Linda configuration is shown in Figure 4.11.

- structure ts = ClientStub (structure SThread = MyThreads
structure Rpc = MyRpc

structure Pres = MyPres
structure Peer = MyPeer

structure LTypes = MyTypes);
- structure Linda = LindaFE (structure TS = ts

structure Ltypes = MyTypes
structure SThread = MyThreads);

Figure 4.11: ML-Linda Remote Instantiation

The communication support provides client and server stub structures that hide the communi-
cation details from the application code. The stub structures provide routines for marshaling and
unmarshaling each of the relevant argument and result types, as well as control structures for making
remote procedure calls. The server communication layer also provides a listener loop that waits for
incoming requests from the network and forks threads to service them.

Distributed Configuration

Suppose we want to distribute the ruple-space implementation over a variable number of nodes. and
make this distribution transparent to the client(s). Again, we have the option of directly modifying
the existing modules, or of designing a new module which can be layered into the existing system
when desired. The SML module system supports this kind of layering approach naturally; a new
layer module can be invoked transparently by an existing module as long as it is defined by the same
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signature as the module it is masking. A functor instantiation for a distributed Linda configuration
is shown in Figure 4.12.

structure ts = ClientStub (structure SThread = MyThreads
structure Rpc = MyRpc
structure Pres MyPres
structure Peer MyPeer
structure LTypes = MyTypes);

- structure Dist = Distr (structure SThread = MyThreads
structure LTypes = MyTypes
structure TupleSpace = ClientStub
structure Peer = MyPeer);

- structure Linda = LindaFE (structure TS = Distr
structure Ltypes = MyTypes
structure SThread = MyThreads);

Figure 4.12: ML-Linda Distributed Instantiation

4.3.6 Distributed Tuple-Space

Distributed tuple-space is a single logical associative memory that is implemented as a set of distinct
tuple-space servers distributed over a collection of physically separate nodes (see Figure 4.3). The
tuple storage and matching systems are replicated on each node of distributed tuple space, although
the stored contents are not replicated. Each node of a distributed tuple-space manages its own
resources and exports all of the Linda functionality. All of the logic involved in combining the
individual nodes into a single logical tuple-space is located in the distribution module, which is
layered transparently between the Linda runtime and its communication layer.

Incorporating distribution into the Linda system creates several implementation issues. One
of the most obvious has to do with the placement and access of remote tuples. There are two
basic approaches to this: one which maintains location transparency, and one which doesn't. An
important goal of the distributed Linda implementation is transparency. The client application should
depend only on the interface to tuple-space, not on any implementation-specific aspects having to
do with communication, distribution, or physical location. This means that the distribution of
tuples in distributed tuple-space must be independent of implementation choices such as the hashing
algorithm. Tuples may reside on any valid node of distributed tuple-space (see Figure 4.13), but the
client application sees only a single unified view of tuple-space. Ideally, the tuples end up distributed
over the available nodes in such a way as to optimize both the necessary network traffic and balance
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the loads on the relevant nodes. The transparency also means that the implementation will be
insensitive to ay tuple migration strategies that might be implemented. The initial implementation
takes a simple approach and selects destination nodes by cycling through the tuple-space nodes.

The complex state management issues of distributed tuple-space are implemented in independent
modules which can be layered into the Linda configuration whenever distribution is desired. In
particular, the ML-Linda client and server distribution layers manage state associated with the
multiple nodes of distributed tuple-space .

L-ii~da Cplie-ntt I

... .. .. .. .. .. .. .. .. .. .. ..

.. l........... ... ...

............. ................ ..........

Figue 4.3: Mltile Cient Usig Dstribued id l-pc

$Note that the client and server distribution modules are complementary: a system must be configured to use both or
neither.
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Client Distribution Module

The Linda client distribution module provides a transparent interface to a distributed tuple-space. It
is layered between the Linda front-end and the communications package. It exports the tuple-space
interface of Figure 4.6, and transforms each Linda request into the appropriate set of remote calls to
various tuple-space nodes, manages the necessary state, coordinates responses, and finally returns
any result to its client, the Linda front-end.

To maintain the location-transparent view of tuple-space, the communication algorithm must
guarantee to return a match if one exists anywhere in tuple-space. The simplistic way to do this is to
broadcast all communication to the full set of tuple-space nodes. Replication strategies (see Section
2.2) can provide a cleaner and more efficient approach. Although a replication scheme can normally
use any legal combination of read and write quorums (see Section 2), a Linda implementation can
only safely use read-one-write-all or read-all-write-one quorums without compromising the location
transparency of the system.9 This peculiarity is due to the ambiguity of the rd operation. Rather
than reading a single logical object, the rd operation returns any member of an arbitrarily large set
of possible matching tuples. Since a set of n replies is not guaranteed to include n copies of the
same object, an arbitrary read quorum would not necessarily provide the required overlap with the
corresponding write quorum.

The ML-Linda distribution layer uses a read-all-write-one approach to communicate with dis-
tributed tuple-space. This means that out sends a tuple to a single ruple-space node, while in
and rd request matches from all nodes. We simulate multicast communication by using multiple
threads to make the remote procedure calls in parallel. We chose read-all-write-one semantics over
read-one-write-all in order to minirize the amount of data transmitted: only one tuple needs to be
transmitted for each operationlo. Although rd and in are sent to all tuple-space nodes, only one
match is chosen; furthermore, it is likely that only one version of tuple space will be modified since
requests are likely to target a specific tuple. If we used a read-one-write-all scheme, the in/inp
operation would be more expensive: although the lookup operation would be performed on a
single node, all of the remaining nodes would have to be involved in order to delete the tuple from
tuple-space.

In our distributed tuple-space, with read-all-write-one semantics, an application can receive
several different tuples In response to an in / inp or a rd operation. Although in / inp is logically
a single operation, it is executed in two distinct phases which must be executed atomically. The rm-v
phase of the in operation must tenwatively remove the matched tuple from tuple-space, to make it
unavailable to any subsequent match requests. Since in/inp is a destructive operation, only one

9 Tbe n x. n processorgxid discussed by Bjomson et al. [81 allows a valid intermediate quorum assignment that depends
on the physical configuration of the system. For this configuration. the write quorum for node i consists of the n nodes in
i's row, and the read quorum consists of the n nodes in i's column.

1°We actually have rd return the matching tuple as an optimization, since we generally expect only a single match and
rd does not require a second phase for any nodes returning NotFound.
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match can be accepted; the tentative removals associated with any other responses must be undone.
In addition to restoring unwanted matches, it is also necessary to terminate any remote threads that
are still blocked before the operation may be safely terminated.

Server Distribution Module

The server distribution module provides a layer of distributed state management around a stan-
dard local tuple-space implementation. It exports an extended version of the standard tuple-space
interface, breaking some of the operations into pieces to allow for remote commit protocols, and
incorporating additional arguments for distributed state management.

Figure 4.14 shows a piece of the SRV-D I STR signature. The gnit operation appears unchanged
in the tuple-space signature. Distribution does not affect its outcome. The out operation also
remains largely unchanged: there is no ambiguity in adding a tuple to tuple-space since there are no
restrictions on multiple copies of tuples. It is only necessary to add a uniquifier argument in order
to preserve at-most-once semantics.

signature SRVDISTR
sig

structure LTypes: LINDA TYPES
exception NotFound

val init : string list -> unit

val out: string * LTypes.T list -> unit

Figure 4.14: Signature for Server Distribution Module init and out Operations

The rd and rdp operations are differentiated by whether the operation is to be blocking or non-
blocking. Since in the distributed case the blocking operation may need threads or processes killed
or state adjusted when a match is found at some node of tuple-space, a rd operation is terminated
by a rd-done operation, with an argument specifying the operation uniquifier. These procedure
declarations are shown in Figure 4.15.

The first part of the l1in operation is both destructive and potentially blocking. When a match
is found, the matching tuple is conditionally removed from tuple-space pending confirmation from
the client. Since in the distributed case more than one tuple-space node may return a match, a second
phase is required in to commit or abort the pending removal. The clean-up operation is split into
two operations, re s t ore and purge, which correspond to the two possibilities (see Figure 4.16).
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(* RD/RDP: attempt to find a match for a template.
* parameters: uniquifier, template

val rd: string * LTypes.T list

-> LTypes.T list
val rdp: string * LTypes.T list

-> LTypes.T list

(* RDDONE: clean up state for blocking rd operation
* parameters: uniquifier

val rd done : string -> unit

Figure 4.15: Server Distribution Module rd, rdp and rd-done Operations

4.4 Discussion

4.4.1 Layering

The ML-Linda implementation illustrates the configuration flexibility inherent in a modular, layered
design combined with the power of a type-safe parameterized module system. The communication
stub layers insulate the system from the network. This transparent layered approach allows the ML-
Linda system to be configured at link-time simply by deciding which modules to specify as functor
parameters at functor instantiation. The specification of distributed tuple-space nodes, should the
configuration require it, is performed at runtime using the init operation. The system can also be
expanded to use multiple tuple-space environments [24] by instantiating the desired number of Linda
runime modules. While in this implementation a tuple-space is not a first class type, first-class
functions allow them to be operated on hierarchically using the eval operator.

eval [STRING "mixed ts",
TSl.out [STRING "foo"], TS2.rd [INTFORMAL]J

4.4.2 Evaluation Strategies

The Linda model itself addresses the issue of alternative evaluation strategies with its eval operator
for managing parallelism. Extending the eval semantics with closures strengthens the correctness of
the programming model and increases the range of acceptable expressions for eval arguments. In
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addition, the existence of first-class functions permits eval's active tuple fields to be incorporated
into the type-safe environment as valid tuple element types.

4.4.3 Type System

Run-time typing is particularly important in Linda, since the most fundamental Linda operation is
tuple-matching. It is critical that the integrity of this type information not be lost in the process
of distribution or reconfiguration" 1 Our implementation of distributed Linda requires transparent
communication of complex objects and some form of associated runtime type information from one
node to another. A rd or in operation binds the fields of a matching tuple from tuple-space to a set
of local variables that can then be modified or referenced by the program, so the type information
used in the tuple matching must also correspond to the language type system.

The Linda model does not provide any protection mechanism for tuples in tuple-space. ML-
Linda implements the basic Linda model and does not address these issues.

4.5 Conclusion

"The immediate goal for ML-Linda was to build an implementation of Linda in an advanced pro-
gramring language that could be transparently operated in any of several modes: locally, remotely
with a single tuple-space node, or remotely with multiple nodes functioning as a distributed ruple-
space. The second and third options result in a distributed Linda system, where the client and server
processes may reside on separate nodes and communicate via remote procedure call. The client
application depends only on the interface to tuple-space, not on any implementation specific aspects
having to do with communication, distribution, or physical location. The type-safe encapsulation
provided by the parameterized module system allows these restrictions to be implemented simply
and naturally, and at the same time makes them enforceable by the language. It also supports
a natural layered design and implementation that is naturally flexible and therefore configurable.
Furthermore, the availability of support for first-class functions allows the semantics of the Linda
eval operator to be supported by the language.

The ML-Linda implementation demonstrates the feasibility of combining a functional program-
ming style with the Linda model of parallel programming in distributed tuple-space. The ease
of decomposing the Linda system into modules reinforces the suitability of a language-supported

"Although we do not go into this in detail, the issues of abstract data type transmission apply in the context of
ML-Linda just as they do in the context of remote communication in general. In order to transmit an abstract type it is
necessary to provide the communication system with information about the implementation that is not available in the
signature: this effectively makes the type explicit, and requires a new mechanism such as a preprocessor to extract the
relevant type information and make it available to the communication system. Complex types whose implementations
are included in the signature are already explicit, and can be readily transmitted. In this chapter we consider only issues
involving explicitly defined complex types.
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parameterized module system for constructing complex distributed programs. The addition of Linda
shared tuple-space complements the functional style and provides a flexible environment with the
benefits of both programming models for the development of distributed systems.
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( RMV: match a template and remove the matching tule
Sparameters: key, uniquifier, template, block

val i in: string * LTypes.T list
-> LTypes.T list

vat inp: string * LTypes.T list
-> LTypes.T list

(P PURGE: purge matched tuple and cz.ean up state frorn.
*parameters: unicruifier, block

val purge: string * bool -> unit
(• RESTCRE: restore matched tuple to tuple space;

* parameters: uniquifier

val restore : string -> unit

Figure4.16: Server Distribution Module -in, inp, purge and restore Operations

Parameterized
Modules
First-class

Functions

Runtime
TypeInfo I

Concurrency
Exceptions

Static

Type-checking

Figure 4.17: High-level Language Features in ML-Linda
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Chapter 5

Protocol Processing

5.1 Motivation

The knowledge we have accumulated about conventional systems programming is not always di-
rectly transferable to distributed systems. Distributed systems have different problems and failure
modes than non-distributed systems. They rely on remote communication, which generally in-
creases latencies. The computer science community has begun to assemble a set of new tools,
or new combinations of existing tools, with which to build distributed systems. Development of
programming abstractions such as replication, concurrency, group communication, and complex

distributed agreement protocols have become increasingly important. Because of all the overheads
involved, enhanced performance is much more likely to be derived from clever algorithms and
program design than from optimizing simple straight-line paths. Providing systems programmers
with the proper language mechanisms and programming abstractions is crucial both to the efficiency
and to the correctness of the systems they produce.

The increase in network bandwidth means that it is often the performance of the system software
responsible for network processing that creates a bottleneck, limiting the bandwidth available at
the application level [12, 14, 21]. Some approaches try to ease the bottleneck by parallelizing
communications, offloading all or part of the transport processing to an outboard processor [19.
31, 34]. In our increasingly heterogeneous environments, however, the bottleneck is often not in
the transport but rather in the presentation processing: linearizing and translating a message to an
appropriate format for transmission requires accessing and copying every byte of data.

Messages containing application data have traditionally been broken down into packets at the
lower levels of the network hierarchy without regard to any high-level structure. This is a beneficial
strategy from the point of view of optimal utilization of packet space, but it has the drawback
that, despite their fragmentation, messages can only be processed as atomic units. For example.
processing on the receiver cannot begin until an entire message has been received and reconstructed.
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and may sometimes wait round-trip network times for retries of dropped packets or packets with
failed checksums. This provides little flexibility in addressing the increasing bottleneck in network
processing; in order for the system software to keep up with the increasing speed and bandwidth of
networks, incoming packets need to be processed as efficiently as possible.

5.2 Overview

Network processing has typically been implemented in a hierarchy of layers [65] which sequentially
manipulate the data packets, where each layer represents a ditterent level of abstraction of the data
being transmitted. This results in a clean logical model which provides a modular, comprehensible
representation of the desired system behavior; unfortunately, the corresponding implementations can
be inefficient [14]. In traditional imperative languages, the inefficiencies can only be addressed at the
cost of modularity: the engineering model can be restructured and the various processing functions
can be regrouped in a more efficient way, but such restructuring violates the layer boundaries, In
high-level languages. however, we can achieve similar performance improvements without losing
the benefits of the logical layered model by taking advantage of language features such as abstract
data types, polymorphism, and first-class functions.

This issue is addressed in the domain of next-generation protocol design by Application Level
Framing (ALF) and Integrated Layer Processing (ILP) strategies [14] (see section 2.2). ALF
fragments messages into frames meaningful to the application, allowing the receiver to process each
frame independently; thus, arriving frames can be passed directly to the higher protocol layers rather
than waiting for complete message reassembly. ILP bypasses layering boundaries to group related
operations on the data, thereby reducing overall processing time.

These strategies are relevant not only specifically at the network protocol level as in ALF and
ILP, but also at other levels of distributed systems. Within the a high-level language framework
providing first-class functions, closures, and a parameterized module system, it is possible to
integrate processing from different system layers while still enforcing the modularity guarantees
of each. A strategy which exports encapsulated functionality (closures) as parameters or return
values preserves module boundaries but at the same time allows re-ordering and composition of
functionality from external modules. This increases flexibility, but nevertheless keeps the logical
and engineering models of the system synchronized. The simpler logical model, in turn, requires
less programmer effort for implementation or modification.

The third case study is of an implementation of a protocol architecture framework, focusing on

the transport and presentation layers, which is used to prototype a set of communication processing
strategies. It demonstrates the utility of high-level language support for facilitating rapid prototypmng
as well as for expressing and evaluating designs and implementations of communication protocol ar-
chitectures, exploring the ideas behind ALF and ILP in an environment with advanced programming
language support. The ALF analog deconstructs argument lists at the sender, and reconstructs them
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on the receiver. The ILP analog accumulates functions from different layers into closures, which
can be transmitted across module boundaries as parameters or return values and executed without
compromising the encapsulation of each layer boundary. This approach also permits the application
of a variety of alternate evaluation strategies to enhance program performance by composing re-
lated operations or by removing computation from the critical path at the network/system boundary.
delaying or possibly avoiding altogether the execution of much of the protocol processing.

As discussed in the previous chapters, layering is a natural, intuitive model for visualizing
many kinds of distributed systems. As evidenced by the ILP proposal, however, the immediate
efficiency gains made possible by operation reordering provide one reason for considering alternate
engineering solutions. Furthermore, such alternatives are also often better suited to the increasingly
complex algorithms which take advantage of the potential concurrency introduced by distribution.
Modularity of processing as well as of structure increases the effectiveness of parallelism, and of
associated strategies such as delayed evaluation.

5.3 Design and Implementation

A diagram of the high-level structure of the protocol processing framework is shown in Figure 5.1.
The system consists of a Frame abstraction which encapsulates the frame representation and a set
of operations for constructing and extracting frame headers; client and server frame management
layers which control the fragmentation and reconstruction of message data. the ordering of protocol
operations, and any relevant state management; the application level client and server used to
demonstrate the package; and an independent communication layer.

appliationapplication

clientserver t/I

Figure 5.1: Protocol Processing Framework Overview

Using closures, it is possible to specify the control flow of a program dynamically by ordering
the desired operations and combining them into a function-valued argument to be passed to the

appropriate subroutine. Although others have considered regrouping the ordering of protocol
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processing operations to improve overall performance, it has always been by blurring the modularity
of the layering boundaries. This blurring effectively complicates the program by distancing the
implementation from the logical model; it also increases the interdependence of system components
which would otherwise be independent enough to evolve separately. The case study shows that
passing first-class function arguments across the layering boundaries preserves the encapsulation of
the implementation, but nevertheless allows reordering and composition of operations.

Specifically, each logical layer of the protocol stack is encapsulated in a parameterized module.
Inter-module control flow is managed with the support of first-class functions and closures. The
implementation demonstrates that logical composition of protocol processing operations can be
accomplished by passing first-class functions across the interfaces between modules, and provides
a test-bed for examining the effects of various parameters on the protocol processing performance.
Although modularity and efficiency are both desirable properties, applying this mechanism in a
conventional programming language environment has the unfortunate effect of putting them in
opposition: combining functionality from logically separate program layers in order to improve
efficiency generally erodes away the corresponding module boundaries. The case study uses high-
level language support to extend the module (layer) interfaces to pass functions rather than values,
allowing modular function composition across type-safe module boundaries. This yields a clean,
modular specification yet allows enough flexibility for more efficient implementations.

5.3.1 Runtime Types

As with the ML-RPC and ML-Linda implementations, we compensate for the lack of runtime type
information by using a discriminated union type which supports recursive combination of integers,
real, strings, booleans, tuples, lists, and arrays (see Figure 5.2). The transmitted data is self-defining,
although the layered design allows alternative implementations (e.g. one providing templates for
marshaling and unmarshaling). Depending on the implementation of the marshaling/unmarshaling
routines, it may only be necessary for the application to supply the type information for polymorphic
types.

5.3.2 Communication Layer Composition

We use the RPC system described in Chapter 3 as the framework for the communication system.
Layer interfaces which do not directly support first-class functions are modified with wrapper
functors.

As a result, a set of functionality can be enclosed in a closure and passed up or down through
the later interfaces to provide the desired execution behavior. Consider an example of lazy eval-
uation. Rather than fully processing each packet as it arrives, the receiver can create a closure to
perform each required function, and associate these with the unprocessed message. For example, a
checksum closure can be constructed at the transport level: this automatically associates the relevant
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signature PTYPES =

sig
exception Type
datatype T = UNIT I INT of int I STRING of string

I BOOL of bool I REAL of real I LIST of T list
I ARRAY of T array

end

Figure 5.2: Transmissible Types

environment bindings with the function code for later evaluation (see Figures 5.3 and 5.4). Here
the transport routine recv invokes the checksum routine rmv-checksum, which sets up and returns
a closure that will extract the message checksum and compare it with the result of the checksum
computation over the message. None of the checksum computation will occur until and unless the
closure is invoked, and a failed checksum will result in the Checksum exception being raised,

fun recv (net) =

let
val msg = Net.receive net

in
(msg, CS.rmv cks msg)

end

Figure 5.3: Receive A Message

fun rmvcks pkt =

(fi () =>
if ((unmarshalchecksum pkt) = (checksum pkt))

then ()
else raise Checksum)

Figure 5.4: Set Up Message Checksum Closures

Returning this closure to the appropriate presentation routines enables the checksum routine to
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be applied during the presentation processing even though it may require access to variables internal
to the transport or checksum modules. The layer boundaries are strictly enforced, but the relevant
information is still available at execution time. This approach serves both to remove the checksum
from the critical path and, depending on the implementation, possibly to reduce the total number
of data accesses required for the processing by applying the checksum and presentation processing
routines incrementally during the same pass over the data.

Alternatively, the application level could provide presentation closures as arguments to the lower
levels, allowing all of the processing to execute eagerly at, for example. the transport level.

5.3.3 Frames

A frame is an abstraction of a data packet in which the data has meaning at the application level:
logically, it represents a meaningful fragment of an application message. A frame belongs to a
specific sequence (message) of a specific connection. The fragmentation and reconstruction strategy
for a particular message is restricted only in that each frame must contain data corresponding to
one or more application-level types, and that it is expected to specify a message uniquifier, a frame
sequence number and an end-of-message flag for each frame (see Figure 5.5). This information is
encapsulated in the frame header prepended to each frame, it is used by the receiver to reconstruct
the message from the individual frames and to provide information on data placement.

frameheader:
operationid int
msgid : int
frame id :int
end of message boo]

Figure 5.5: Frame Header

5.3.4 Frame Management

One of the objectives of ALF is to make the frame-based system independent of the order in which
frames are sent or received. There are many reasons for incoming packets to be processed out-of-
order on the receiver: they could have arrived out-of-order because of network resequencing due to
lost or corrupted data, or they could be effectively reordered due to the behavior of more complex
high-level strategies such as concurrency or delayed evaluation on the receiver. ,r concurrent
processing on the sender.

One of the major advantages of a frame based communication system is that the individual frames
of a message are no longer interdependent. This allows more rapid and efficient protocol processing,
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since frames can be processed as they arrive rather than in message-sized bursts. Some applications.

such as file transfer and video applications, may also be able to take immediate advantage of the
availability of the partially reassembled data; howe', cr, this is likely to require that the application
incorporate knowledge of the transport strategy.

A more general approach is to add a frame management layer between the communication
layer and the application which encapsulates the frame-specific knowledge. Such a layer can take
advantage of the properties of application level framing and the support of a parameterized module
system and first class functions to invoke the server application with the equivalent of futures in
place of actual arguments. In this case, the computation encompassed in the future construct is to
block on the arrival of the data and then perform the requisite protocol processing and unmarshaling.
Thus, the system provides dynamic reconstruction of logical messages (frames).

The use of closures allows the possibility of customizing the specific part of an evaluation to
delay. For example, in the domain of protocol processing, we might consider whether to delay the
checksum operation as well as the unmarshaling of received data. If the checksum is performed
immediately on the arrival of a frame, then some of the benefits of the integrated layer processing
approach are lost: the data will have to be touched at least once for the checksum operation and
again later for the marshaling and unmarshaling. However, if the checksum operation is included in

the closure and delayed until some unspecified future time, then the system will need to be able to
handle the possibility of a retransmission request generated by a failed checksum.

This can in fact be an application-specific choice. For some applications, the strategy for
handling a failed checksum might be simply to discard the packet and continue. In this case, there is
no extra management overhead required to maintain old state on the sender, and there is the savings
of being able to compose the checksum and the marshaling into a single pass over the data. For
an application requiring retries for failed checksums, the situation is different. In th:- case, the
sender must either keep a database of old frames until it receives an acknowledgment of receipt from
the receiver; or, alternatively it must be prepared to regenerate any given frame on request in an
idempotent manner. There can of course be various combinations of these strategies- for example,
the sender could expire frames from its database according to a preset timer. Any retry requests
from the receiver arriving after a frame's expiration would be rejected.

To simplify the implementation, we separate the checksum calculation from the marshaling and
unmarshaling computation. The checksum is performed by the transport layer on receipt of the
frame, and the unmarshaling is encapsulated into a closure and passed along to the application. A
more detailed implementation might allow variations of the timing of the checksum calculation and
of the retry strategies used by both the sender and the receiver.

Implementation of application level framing would require modifications at the transport layer

and below. Since with the current SML platform we do not yet have access to these levels, our
implementation is essentially a simulation. Rather than sending the frames as pieces of a single
transport-level message, in the simulation each frame is sent as a scparate message. To compensate
for this, the communication interface for which RPC stubs are generated consists of a pair of routines,
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val send-frame: frame -> unit

val recv frame: unit -> frame

Figure 5.6: Frame Transmission Functions

send.Irame and recv-frame (see Figure 5.6). sendf rame takes an argument of type frame
and returns unit, and recvframe takes unit and returns a reply of type frame. For both the
client and server, it is the frame management layer which translates the actual application interface
to and from the frame-based interface.

Client Frame Management

The major functions of the client frame management are to break a high-level message into a sequence
of application-level frames and to maintain sufficient state to respond to frame retry requests. The
only formal restriction is that each frame must correspond to a type, or unit of data, defined at the
application (or language) level. The degree of fractioning is arbitrary.

One of the interesting issues in considering an application-level framing approach is how to
choose the fragmentation strategy. Fragmentation can be chosen statically for all applications; it
can be chosen heuristically per application (i.e. coded into the application client and server frame
management); or it can be chosen dynamically at runtime, possibly necessitating a negotiation
process between the client and server management routines in order to regulate the process of message
reconstruction. The simplest strategy to implement for the prototype is a static fragmentation which
fragments a message at parameter granularity. This simplifies the fragmentation process for the
client, and obviates the need to include a negotiation scheme in the initial prototype.

Frames may be stored in case of retry requests. The entries could be removed lazily after a
specified timeout has expired, on demand after acknowledgment from the receiver, or via some
combination strategy. The protocol must ensure that the frame database will not cause a storage leak
in the case of lost acknowledgments.

Server Frame Management

The server implementation is multi-threaded. Processing begins with the first received frame of
any request, and is only interrupted if there is an attempt to access data which has not yet arrived.
This is accomplished by invoking the server routine withfutures, which are effectively closures for
accessing the relevant arguments, rather than directly with the arguments themselves. To facilitate
the reconstruction process we provide a module which incrementally reconstructs parameter lists
from discrete frames, constructing a list of acczess functions on the arrival of the first fragment. An
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element is represented either by a value or by a function which produces a value when invoked.
Furthermore, since an attempted access can fail if the requested fragment is not yet available, the
access routines provide both blocking and non-blocking options to the caller.

The main part of the work on the receiver is related to the processing and final placement of
the received frames in the application address space. Since the frames sent by the client are not
constrained to arrive in any particular order, the server stubs must be able to reconstruct complete
parameter lists from a sequence of unconnected messages. As each frame is received. it is processed
and stored in the appropriate slot in a server data structure. This structure is used as a database of
current message fragments; once a server application routine completes, any existing frames of the
corresponding message are removed, and any new arrivals will be ignored.

The high-level fragmentation inherent in ALF will result in some wasted space in the physical
layer packets, but in return will provide a greater degree of fault tolerance for the processing of
lost or unordered packets at the receiver. The additional cost in network bandwidth is proportional
to the number of frames times the frame header size; any additional bandwidth is due to wasted
space in the packet buffer, and depends on the relative sizes of the frames and the buffer. Although
concurrency introduces its own complexities, the ability to fully specify the execution environment
makes it easier and safer to perform operations such as parameter marshaling concurrently.

There are several options for ALF presentation processing strategies. Packets can be eagerly
unmarshaled as they arrive, and the resulting argument values stored and assembled for later server
invocation. They can be lazily evaluated on demand only, passing unmarshaling closures to the
server functions to be invoked when and if the parameters need to be accessed. They can be lazily
unmarshaled using a future construct [33], which introduces concurrent evaluation.

A more interesting possibility than any one of these approaches is to take advantage of SML's
abstraction mechanisms to present a uniform argument stream interface to the server application
functions, hiding all the evaluation and assembly implementation details, and allow access to
several evaluation strategies. All of these options can be expressed naturally in SML; the ability
to experiment with these alternative orders of evaluation in a type-safe, modular way is one of the
main advantages of this approach.

5.3.5 Application Client and Server

In principle, the structure of the underlying communication system should be transparent to the client
and server application processes even when it uses strategies such as ALF or delayed evaluation.
The degree to which this is actually true depends on two main points: the amount of control desired
by the application, and the amount of support in the implementation environment for the data and
control structures required to transparently construct the system components.

In the context of RPC, we have seen that in order to make the communication layer completely
(syntactically) transparent to the application it is necessary to leave all connection related choices and
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specifications to the system'. Depending on the application, it may be preferable or even necessary
to manipulate connection parameters explicitly. Similarly, various data and control constructs can
be implemented more or less elegantly depending on the support provided by the implementation
environment. For an implementation which incorporates delayed evaluation of parameters, an
environment which supports a future construct can leave the evaluation strategy transparent to
the application; with less underlying support, however, it might be necessary for the application to
accept a modified syntax in order to use the alternate strategy.

5.4 Discussion

The combination of first-class functions, encapsulation, polymorphism, and exceptions provides the
base support for various alternate evaluation strategies. Closures provide a clean mechanism for
specifying both the function body and its relevant environment; furthermore, their first-class status
allows them to be easily manipulated and accessed. Polymorphism allows the high-level abstractions
to be general enough to be applied across a wide range of applications. Exception handling facilities
allow the propagation of enough error information to make error conditions meaningful even when
computation may take place in a non-intuitive order.

Parameterized
Modules
First-class

Functions
Runtime
Type Info 1
Concurrency
Exceptions *

Static I

Type-checking i 1

Figure 5.7: High-level Language Features in Protocol Framework

'Ile more complex failure modes of remote communication make it impossible to achieve complete semanic

transparency
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5.4.1 Layering

Encapsulation

The protocol framework demonstrates that logical reordering of protocol layers can be accomplished
by passing first-class functions across the interfaces between layers, and provides a test-bed for
examining the effects of various parameters on the protocol processing performance.

5.4.2 Evaluation Strategies

A complication of using a delayed or lazy evaluation strategy for the unmarshaling at the receiver is
that the sender needs a mechanism for saving or regenerating frames in order to respond to delayed
retry requests from the receiver. If packets are saved rather than regenerated, then they will need to
be garbage collected once the relevant call completes (with implicit or explicit acknowledgment) or
a specified timeout expires. The receiver could be required to verify all packets within the timeout
period, or the sender could have the capability to (re)construct packets on demand. The latter
strategy is also useful in the context of lazy transmission: the client can transmit small fragments of
the parameter data with the request, and transmit further data either lazily or on demand.

All information about locating and extracting the relevant application frames remains internal
to the appropriate modules, yet the application is free to begin its processing immediately after
the receipt of the first application frame. This not only increases flexibility, but has potential for
improving performance as well. As long as the application doesn't actually try to access data that
has not yet arrived, it can begin its processing in parallel with any further data transmission. Thus,
depending on the amount and complexity of the data transmitted, the processing required on the
sender, the transmission itself, and the processing on the receiver can all potentially be performed
in parallel.

Flexibility

The ability to treat functions as first-class objects, and the ability to encapsulate an environment (set
of variable bindings) into a function in the form of a closure can provide a great deal of flexibility in
selective collapsing and recombination of protocol layers and functions. The flexibility is reflected
in the ease of design and implementation, and also in the modularity that allows operations such as
dynamic reconfiguration.

First-class functions also provide the tools to take advantage of the ALF approach. In the
absence of first-class functions, it is still necessary for all the sender data to arrive before the receiver
application function can be invoked: otherwise, we run the risk of attempting to access data that
is not yet present. We address the problem by using a future construct: with first-class functions,
the system can be designed to take as arguments functions that, when executed, will produce the
relevant arguments. This way, all information about locating and extracting the relevant application
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frames remains internal to the appropriate modules, yet the application is free to begin its processing
immediately after the receipt of the first application frame. This not only increases flexibility, but
has the potential for improving performance as well. As long as the application doesn't actually try
to access data that has not yet arrived, it can take advantage of any available concurrency and begin
its processing in parallel with any further data transmission. Thus, the processing required on the
sender, the transmission itself, and the processing on the receiver can all potentially be performed
at least partially in parallel.

Information Flow: Composing Functions

The conventional layered protocol implementations have the advantage from a software engineering
perspective of modularity and a clean, well-defined abstraction and interface. The disadvantage
is that adherence to the interface specifications results in a narrow, restricted flow of information
between the protocol layers. Control flow is restricted to hierarchical calls between adjacent layers,
and the data is generally represented as a low-level type such as a string of bytes.

Some of these limitations can be addressed by the inter-layer function composition of ILP.
Performing 1/0-intensive operations sequentially requires multiple accesses to the same data. Thus,
composing the functions and applying them incrementally to the same data has the potential for
significant performance improvements. This kind of function composition yields a program structure
similar to one designed for lazy evaluation. In both cases, the technique is to store enough state in
the closures to rearrange the execution order; in a certain sense, it is irrelevant whether performance

or flexibility is the ultimate goal.
Although modularity and efficiency are both desirable properties, applying this mechanism in

a conventional programming language environment has the unfortunate effect of putting them in
opposition. However, if the appropriate language paradigms are available, we can reorder the
processing order of the system by extending the module (layer) interfaces to pass functions rather
than values. This leaves the order of processing, an implementation decision, to the implementor,
but leaves the specification independent of the implementation details. This is particularly useful for
a network protocol specification, since it is imperative that interface specifications be fixed despite
the wide variety of local needs and physical configurations.

Streamlining Critical Paths

The protocol processing, package provides an example of the use of first-class functions for lazy
evaluation.

Choosing alternate evaluation strategies involves making assumptions about the normal behavior
of the system. For example, delaying the checksum computation may only be cost-effective if we
expect most checksums to succeed, or if we expect some percentage of the transmitted data to be
superfluous. This approach requires a fixed overhead proportional to the volume of message data
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transmitted in order to enable the sender to resend old packets should a delayed checksum operation
fail. The sender must have access to sufficient information to either regenerate the relevant frame,
or to extract it from storage. The current implementation stores frame values for a preset timeout
period, rejecting any retry requests which arrive after timeout expiration. The length of the timeout
puts a bound on the length of time for which the receiver may safely delay checksum evaluation. Cost
calculations must consider the resources required to either save or re-compute the values requested
by the remote site as well as any performance benefits introduced by the delayed evaluation on the
receiver.

In addition, since communication processing is generally a critical path, it is also possible to
improve overall performance with strategies such as lazy processing on the receiver (as in ILP/ALF)
or eager transmission strategies on the client. Strategies such as lazy, delayed, or eager evaluation
(see Section 2) can be readily expressed with various combinations of first class function parameters.

5.4.3 Type System

The advantages and drawbacks of a strong type system are essentially the same for the protocol
processing framework as for the previous two case studies. The system implicitly relies on the
type system's validation of the types passed across the interfaces, and on the associated guarantees
of modularity and locality. In addition, the type system presents the same set of communication
problems as discussed previously: the absence of runtime type information, and the problems of
accessing abstract type implementation structure.

In the context of ALF, we can consider again what it means to share constructed types, both
abstract and non-abstract, across address spaces. In fact, even the term "abstract" itself may be
misleading: even for complex types with explicit representations at the language level, the physical
representation may differ from compiler to compiler or machire to uachine. So, in fact, it is still the
type abstraction that is being shared rather than any concrete representation. In the case of abstract
types with private representations, the shared abstraction is at an even higher level. Such a notion
of sharing seems a fragile basis for a mechanism as potentially powerful as ALF, which depends on
the notion of common application-level types.

in general we side-step a class of the problem by choosing to synchronize on language-level rather
than bit-level type representation, expecting the communication system to perform any necessary
bit-le-el transformations as part of the transfer. However, the notion of abstract data-types challenges
even that, and demands reconsideration of the meaning of distributed type sharing. It is possible
that the problem will not be adequately addressed without distributing the type management of the
lan?-uage itself; in any case, it is clear that this subject requires further investigation.
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5.5 Conclusion

Language constructs such as closures and a type-safe parametenzed module system can greatly
enhance the power and flexibility of large systems. This is particularly true of disrbuted systems,
where standard systems issues are compounded by reliance on remote communication and the exts-
tence of additional degrees of freedom, these manifest themselves, for example, as complex failure
modes and independently administered system components. Distribution also requires the ability
to deal with multiple event orderings, increasing the relevance and utility of altemate evaluation
strategies. This case study shows that passing first-class function arguments across layering bound-
aries preserves the encapsulation of the protocol implementation. but nevertheless allows reordernng
and composition of operations. Combining this power with the flexibility introduced by application
level framing introduces the potential for a wide variety of alternate evaluation strategies suited to
different performance and flexibility requirements.

Rather than fully processing each packet as it arrives, the receiver can create a closure to perform
each required function, and associate these with the unprocessed message. Returming this closure
to the appropriate presentation routines enables it to be applied during the presentation processing
even though it may require access to variables internal to. for example, the transport or checksum
modules. The layer boundaries are strictly enforced, but the relevant information is still available at
execution time because it is encapsulated within the closure environment.

The protocol processing package again demonstrates the value of a parameterized module
system. In this case, the focus is mainly on the value of type-safe encapsulation rather than
on configurabiity, and on transparent layering the communication and ALF modules into the
overall system. The runtime type problem did not come up specifically here, since it is implicitly
encapsulated in the communication layer and the implementation did not attempt to tansmit any
polymorphic types; however, the lack of runtime type information is a problem for any system which
requires linearization of types whose representation is not fixed.

First-class functions provide the basis for the delayed processing approach, allowing the design
to take advantage of the application level framing to remove protocol processing from the cntical
path and potentially introduce parallelism into the system. When combined with the parameterized
module system, they provide the means of reorganizing the control flow of the system without
sacrificing the encapsulation of the logical layered model.
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Chapter 6

Performance

As discussed earlier, the case studies are intended as design validations rather than production-
quality systems. Although they have been implemented in SML/NJ, they represent language-
independent examples of systems implemented using specific high-level language features. Absolute

performance measurements can provide a reference point, but both a compiler and the applicatons

themselves require more development and tuning before they can be meaningfully compared to
production systems implemented in more conventional, highly-tuned languages. Since languages
such as Modula-3 and Scheme support many of the relevant language mechanisms and still achieve

respectable performance, it is likely that many of the performance bottlenecks in SML and other

high-level languages are not inherent in the languages themselves; this is further supported by the
results of on-going work focused on improving various aspects of SML/NJ performance.

Micro versus Macro Performance In making a global performance analysis, it is important to

realize that the number of variables in any real system makes it impossible to be truly objective.
For example, one might perform a study that suggests that it is acceptable for a particular language

construct to be expensive because it is rarely used, when in reality it may be preciseiv because it is
expensive that it is rarely used. Although it is certainly relevant to consider micro performance, es-

pecially for critical sections of code, the overall performance of complex, and especially distributed,
systems can depend on higher-level abstractions. Distributing a system introduces a whole new

set of issues which extract a cost in resources and performance. Communication itself introduces
a certain amount of latency, and suddenly the importance of straight-line code performance must

be weighed against higher-level design strategies that trade off argument complexity or computa-
tion for message frequency. Communication mechanisms such as broadcast and multicast [16. 111
have demonstrated the effectiveness of parallel communication in reducing communication latency.

network bandwidth, and sender computation time. Overlapping portions of the network latency
with remote processing time can significantly improve overall performance [521 even when physical
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multicast isn't available, especially in cases where group sizes are large.

6.1 SML/NJ

Implementation-Specific Efficiency Considerations

Specific design and implementation decisions can have a significant impact on the performance of
any computer system. We examine some of these choices for SMLNJ so that we can consider their
effects, both local and global, on the performance of our case studies. For a more detailed discussion
of the SML compiler, see Appel [3).

The compiler uses continuation passing style (CPS) as an intermediate representation, so func-
tions are automatically represented as closures. SML/NT 's CPS-style implementation adds an extra
overhead for procedure calls. Since procedure call frames are allocate on the heap rather than
on a stack, each one requt-es a tag word. Although functional programming style typically results
in fewer real procedure ca!ls than imperative style, the calls that are made must include the extra
tag-word overhead.

The implementation of SMN,/NJ keeps all storage. even procedure call frames, on the heap.
This means that procedure frames are garbage collected in the same way as any other data. This
approach introduces some performance tradeoffs: for instance, storing frames on the heap can incur
large garbage collection overheads if it is done naively for highly recursive routines. On the other
hand, the heap based approach means that no special operations are required for data that outlives
its enclosing block.

Another issue for heap-based languages is memory usage. Not only does a complex program
require a lot of heap space, but it also requires enough additional space to do a copying garbage
collection. Although it is possible to load a machine with enough memory to avoid paging under
these conditions it is unfortunately not always practical, and many users are still experiencing
performance degradation due to paging.

One SML/NJ implementation consideration particularly relevant to systems programming is that
of using tagged integers. Allocating one bit for the tag means that only 31 bits are left for the integer
value, so all integer operations must do overflow checking as well as tagging/untagging. This results
in roughly 2 to 3 operations to each one in an environment with untagged 32 bit integers. Although
the compiler can optimize away a certain percentage of these checks, and although some specific
architectures may be able to use traps in place of checks, there will always be some additional
overhead for integer arithmetic with this implementation.

Arrays, which are often used in systems programming, are also slow in SML/NJ. Array overhead
comes from two main factors: they require bounds checking, and they are composed of mutable
datatypes. Fortunately, some of the mutability overhead is avoided for the case of integer arrays:
integers, unlike more complex types, do not require a cons operation to the internal store list for
each assignment.
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The current implementation contains no special optimizations for address manipulations Such
optimizations are not particularly hard to add: their absence merely reflects the lack of tuning tor
systems programming, A related example is the current implementation of the stmngcopy operation.
one that is used quite heavily in communication systems.

A more complicated problem is the poor data locality exhibited by languages with copying
garbage collectors. Because the garbage collector reorders the data dunng collection, programs tend
to generate a greater number of page faults. cache- and trnslation look-aside buffer msf_ .•±c-h
there is no easy fix for this problem, it is a known problem and is currently under consideration.

The garbage collection algorithm is generational copying, and the resulting overhead is roughly
5 percent of computation time [3]. Since most data is short-lived, generational collection reduces
the overhead of collection by separating the older, longer-lived data from the newer data. The older
data needs to be collected much less often, which means that the garbage collector can focus on a
smaller portion of the total heap space and collect a higher percentage of garbage per run.

Although the garbage collector must maintain large amounts of virtual heap space. much of it
is unused at any particular time. Since it maintains so much information about the contents of the
heap, the garbage collector can make much better-informed paging decisions than the operating
system. There are also many tradeoffs to be made in time versus space optimizations. Current
work in this area shows promising reductions in paging activity when the garbage collector's
knowledge is combined with Mach's external pager support [15], especially in the domain of heap
management [47].

Some performance measurements for the SMI./NJ compiler are reported in Appel [331

6.1.1 SMLJNJ Baseline Measurements

To better understand the some of the costs of using SML, we measure some of its basic operations.
Some of these are compared with their counterparts in C. a language frequently used in constructing
distributed systems. We focus on procedure call, memory allocation, and closure construction. It is
important to note that direct comparisons of micro-operation times can be misleading since programs
written in SML and C are unlikely to use the same combinations of primitive operations. Not only
might similar language constructs be compiled into different instruction sequences. but the entire
program structure is likely to be quite different as well.

Measurements were taken for two different machine types: a Decstation 5000 with 64M of
memory and a sun 4/330 with 24M of memory. The Decstation 5000 is faster than the Sun 4/330 in
all of the tests. C tests are compiled with gcc, and versions both with and without optimization are
run. SML tests are run using the SML/NJ [41 compiler in interactive mode.

Since the duration of the operations being measured is well below the granularity of the system
clocks1 , the numbers presented are the averages of large numbers of iterations. The general testing

1The clocks on the systems being tested tick at apprximately 15 millisecond intervals
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strategy is to run multiple trials, where each trial consists of a sufficient number of iterations to
make the time per trial relatively insensitive to variations of clock-tick granularity. Since this varies
according to the timing of the operation being measured, the number of iterations is specified as
a parameter to the main testing routine. The values recorded per trial are the total time for all
n iterations, and the average time for a single iteration (total time divided by n). The mean and
standard deviation of the totals and the averages is computed for each set of trials. Although the
results are not true values and standard deviations, they nevertheless give a reasonable indication of
the variability of the results. In most cases, the standard deviation is quite low. usually below one
percent of the total.

The measurements use the timer facility within SML, which estimates garbage collection time
as well as mutator (system) time. The data reflect only mutator execution times, although we discuss
some of the conditions that result in heavy garbage collection activity at relevant points in the
following discussion. Most of the garbage collection activity for these tests was due to the loop
effect from the large (usually greater than 100,000) number of iterations required. The data has
been adjusted to remove the test overhead, which was measured by running a null loop for each test.
The numbers presented do not reflect any garbage collection time. The data used in the graphs is
presented in tabular form in Appendix B.

Closure Construction SML/NJ implements procedures as closures, with records containing the
function's free variables and a pointer to the function body. As this suggests, Figure 6.1 shows
that constructing a closure in SML/NJ involves a fixed overhead time for record construction plus
variable time proportional to the number of relevant environment variables.

The performance tests are based on a procedure declaration with II arguments. Closure con-
struction time is measured in a tail-recursive loop which generates a list of function closures. The
closures are created by partially evaluation the pre-defined curried function, which is passed to the
test loop as one of the parameters. Figure B.1 shows the test loop measuring the time for a closure
with three bound arguments. The parameter fcn refers to the 11 argument curried procedure; the
result of applying it to the three arguments given is a function which takes the remaining 8 arguments.

Each iteration of the test loop binds different parameter values in order to ensure the creation
of a new closure, and returning the generated list prevents the compiler from optimizing out the
computation of otherwise unused values. The use of tail recursion also minimizes the amount of
state information (i.e. stack frames) required for the computation.

Memory Allocation Memory allocation is optimized in SML/NJ. All memory, including proce-
dure call frames, are allocated from the heap. Memory allocation and deallocation is implicit in
SML: heap space is allocated whenever space is needed to store a value, and is deallocated during
periodic garbage collections. Since SML/NJ uses a compacting garbage collector, the known free
area is always contiguous. The cost of testing for heap overflow is a single instruction per basic
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Figure 6.1: Constructing SML/NJ Closures with N Arguments

block. Using the abstract syntax tree of the program, the compiler is able to pre-determnne how
much storage will be needed by an entire basic block 2 . This is compared against the available free
space, and an overflow exception is generated if the available space is msufficient. The exception
is caught by the runtime system and causes the invocation of the garbage collector. Allocation
therefore requires almost no overhead beyond the data store.

Tests were run for allocation of a tuple of integers (see Figure B.2) ranging in size from I to
100. Tuples were used rather than arrays because of the overhead of the continuation construction
involved in array creation; the tuple allocation is roughly analogous to a block malloc and bzero in
C. The constructed value in each loop iteration is an x-tuple. The results are shown in Figure 6,2.

The C allocation test uses malloc to allocate a block of the specified number of (4-byte) words
and then initializes it with bzero (see Figure B.3). The memory is freed at the end of each trial.

The results are shown in Figure 6.2 and Table B.2. Since the allocation and zeroing are performed

2Dynamicanly sized objects, such as arrays. are allocated out-of-line, and their allocation code contains explicit
overflow checking
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Figure 6.2: Allocation Tines

at call time, we expect that the cost of allocation will be greater for a simple block in C than in SML.
Optimization had virtually no effect on the performance.

Procedure Call The notion of procedure call in SML, or in functional languages in general, is
generally complicated by compiler optimizations based on the language structure. Code written
in a functional language is likely to consist of many small, often local procedures. In many
cases, the compiler will optimize away the procedural interface and simply in-line the relevant
code. One consequence of this is that, despite the appearance of the code, the overall cost for
procedure call invocation may often be less for a functional implementation than for a corresponding
implementation in an imperative language. Another consequence is that a test routine for measuring
procedure call overhead needs to take certain Precautions to insure that the procedure call being
measured is indeed compiled into a real procedure call.

The procedure call test measures the cost of a procedure call with 0 to 10 arguments. The
arguments are touched inside the procedure in order to ensure that they are not optimized away.
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Figure B.4 shows the test routine for the 3-argument case. The routine is passed a function of three

(integer) arguments, the integers to bind, and the number of iterations. It defines a local function to
perform the n iterations of the function invocation, and then invokes the loop. Because the function
is defined outside the scope of the test routine and is passed in as a parameter, the compiler cannot
know whether or not there are any side effects, and therefore cannot optimize the call away even
though no results are returned.

The C procedure call test code (see Figure B.5) is structured similarly to the SNML code. The
function parameter takes the appropriate number of integer arguments, and adds the sum of their
values to a globa: variable to ensure that the compiler does not optimize out any of the arguments
or the function invocation. The results show the same pattern described above, although the
performance is significantly better than for the SML/NJ procedure call.
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Figure 6.3: Procedure Call Times

The results for the procedure call test are shown in Figure 6.3. Although the optimized and
unoptimized versions start off with approximately the same performance for null procedure calls.

4 performance degrades more rapidly at higher numbers of arguments for both machine types.
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Chapter 7

Discussion

Distributed systems are more than just an extension of conventional non-distributed systems. They
require some method of remote communication, with increasing demand for higher bandwidth
and lower latency. Distribution introduces different and often more complex failure modes, this,
in turn, requires various combinations of dynamic system reconfiguration. process-independent
(persistent) data, more complex system state, and strategies to improve fault-tolerance and overall

system performance. System management thus becomes a complicated and error-prone process.
and the increased complexity also decreases the validity of intuition in system design, which in turn
increases the importance of rapid prototyping as a design tool.

Increasing percentages of programming effort are being devoted to the management of complex
distributed state. Like most complex tasks, the work is much easier with the right tools. The language
we use shapes our thinking [631, and therefore also shapes the design of our solutions. The flexibility
and conceptual simplicity of high-level language abstractions can increase the expressive power and
efficiency of the programmer. Studies have shown that the average programmer's productivity, in
lines of code, is independent of the programming lang.age used 321]. Since i more expressive
language requires fewer lines of code, a programmer using such a language will tend to have a
higher productivity than one using a more conventional and less expressive language. Moreover,
we are better able to conceive of and express complex systems and protocols with a more powerful

and expressive language. Taking advantage of the mechanisms provided by high-level languages
can simplify the jobs of the systems designer, the application programmer. and the users. Designing
and using programming languages whose features decrease the complexity of the programmer's job
while increasing flexibility and safety is an important and perhaps even necessary step to compensate

for the growing complexity of distributed systems.
Although distributed systems are more complicated to design and use than their non-distributed

counterparts, the realities of scale and current usage pattern seem inescapable. The desire to share
data or physical or intellectual resources among physically distributed sites leads immediately to at
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least a loosely coupled distributed system. Intellectual resources such as Internet bulletin boards
allow reasonably interactive discussions and requests tot information among widely physically
dispersed individuals with similar interests. Expensive hardware components can be shared among
more locally distributed groups. Information such as technical papers or test data can be readily
transmitted to connected sites around the world. Although we have moved from time-shanng
systems to personal computers or workstations, the data and resource shanng model is still very
relevant to our electronic interactions.

Many of the facilities of high-level languages, although not always specifically designed for
distributed system or applications, address these concerns. Language supported encapsulation, both
at the language and at the module level, provides the implementation independence required to
support effective modularity. Sophisticated user-defined types make management of complicated
system state easier and more comprehensible, and the built-in modularity of abstract data types
make local modifications less disruptive to system availability. Heap based storage makes process-
independent data easier to support, and automatic garbage collection avoids much of the nsk of
unbalanced memory allocation. The flexibility introduced by polymorphism and parameterized
module systems facilitates dynamic extensibility and system (re)configuration.

Such structuring mechanisms and techniques are obviously not unique to advanced programming
languages, but without the appropriate language support they have hidden pitfalls. Although
it is possible to compose crude closure analogs in non-functional programming languages. their
complexity makes them awkward to use. The callbacks used in the C interface to the X Window
System [661 are an example of such awkwardness, as are the call vectors used for runtime branching
decisions which are generally composed of globally defined function pointers rather than real
closures. These cases require the programmer to ensure that all of the relevant environment is
transferred correctly so that it is available at invocation time. Furthermore, the necessity of using
a global pointer to define what should be a private (local) function definition means that it is
impossible to ensure that an implementation change will not have hidden side effects. The language
constructs of an advanced programming language, on the other hand, provide clean, integrated.
type-safe abstractions that readily express the modular components of distributed systemz and can
also provide the basis for more formal reasoning about correctness.

The evidence from the three case studies demonstrates that a functional programming language
incorporating support for first-class functions, a powerful type system, and a type-safe parameter-
ized module system can provide an attractive environment in which to implement many types of
distributed systems software. The availability of a type-safe parameterized module system allows
for straightforward link-time reconfiguration, which in turn provides a basis for simple, rapid pro-
totyping of different design alternatives. It is not necessary to discard the benefits of modularity in
order to benefit from layer collapsing, function composition, or delayed evaluation. The availability
of first-class functions provides a type-safe way to cross module boundaries without violating the
principles of modularity. Furthermore, the ability to dynamically construct closures allows the
results of a function application to be as independent as necessary of its invocation environment;
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this permits the application of a variety of alternative evaluation strategies to enhance program
performance.

In this chapter we discuss the effects of implementing distributed systems software in an environ-
meat providing high-level language support. In particular, we focus on issues related to flexibility.
control flow, and typing. In each case, we draw on experience and examples from the case study
implementations to illustrate the points under consideration.

7.1 Flexibility

Comprehensibility, extensibility, and maintainability are difficult to measure quantitatively but are
nontrivial issues as systems become larger and more physically separated. Hardware and software
platforms are changing rapidly enough that reliability must include the ability to adapt to the changing
environment and changing maintenance crews, features which large software systems often lack.
High-level language implementations generally have the advantage of being easier to read and
comprehend, since computation constructs are more likely to be described at a high level without a
lot of lower-level control information.

Modularity facilitates change by fixing the system interfaces at a more abstract level, leaving
more freedom to independently modify the implementation details. A simple possibility is the
modification of the implementation of a queue from an array to a list: a more complex possibility is
the use of layering to replace a routine body by a communication stub with the same interface.

In addition, a parameterized module system allows for simple mutation of existing interfaces
or their specific functionality through the use of wrappers, which provide a functionality loosely
analogous to inheritance in an object-oriented language. The exported type of the wrapper is
effectively an extension or modification of that of the original module: it takes the functionality of
the parameter module as a base and modifies or extends it as desired.

Another manifestation of flexibility is the ability to apply the modularity support to construct
higher-level computation structures. This is explored to a small extent with the alternative evaluation
strategies proposed in the third case study within the framework of ALF.

Modularity

Modularity is already regarded as a generally advantageous approach to programming in any pro-
gramming language: one could even argue that it is perhaps the one main precept of software
engineering that has been accepted without argument by the systems community. It is clear that
even limited application without any special language support can improve the quality and general
flexibility of a system.

In fact, modularity can take on many different forms. The most common forms applied in
traditional programming languages are groupings of functionality, for example at the level of
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procedures or files or subsystems. This son of modularity is integrated into functional and object-
oriented languages, where a more detailed hierarchy of grouping structures is available. In addition,
such languages also generally provide abstraction or encapsulation. providing language support to
enforce the privacy (locality) of type, variable, and procedural definitions local to a module. While
programs in traditional languages can mimic this general structure. they generally cannot actually
enforce any of these locality boundaries.

Another manifestation of language-supported modularity is the first-class function and its im-
plementation as a closure. This extends the encapsulation of data to include procedure bodies
(executable code) as well as an associated environment. First-class functions allow procedural
abstractions to be passed around in the same way as any other type of data, extending language

consistency guarantees to invocation environments.
The modularity embodied in first-class functions is extended further in the form of a parameter-

ized module system. A parameterized module system, once instantiated, binds its module parameters
to local names much as a procedure binds its arguments. These parameters may then be referenced
throughout the life of the module as a stable part of the module environment. The modularity
provided by a parameterized module system can be used to facilitate configurability. by allowing
the same module implementation to be instantiated with different parameters just as a procedure can
be inmoked with different arguments. It can also be used to facilitate extensibility in the form of
layering, since module types are defined by their interfaces rathe- than by their implemurntations.

RPC Linda Prot

Parameterized
Modules
First-class

Functions

Figure 7.1: Modularity Support

Figure 7.1 indicates that all three case studies rely on the various forms of modularity. In the ML-
RPC case study, we see that the language-supported modularity is used primarily in the form of the
parameterized module system, which supports module layering. Although first-class functions can
be used to incorporate more complex evaluation strategies, the basic RPC implementatien itself does
not specifically rely on them. From the ML-Linda example we can see that different configurations
of the basic system modules can be selected and sp-'cified easily and simply by instantiating the
parameterized system c-)mponents with the appropriate parameters (see Figures 4.1. 4.'. and 4.3).
This again relies most heavily on the modularity of the parameterized module system, although

* as discussed in Chapter 4 the implementation of the eval operator is based on the availability of
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integrated first-class functions. Modularity also figures prominently in the third case study, where the
ALF implementation allows message frames to be treated as modular units which can be relocated
with the help of closures. First-class functions are the most important manifestation of modularity in
the ALF implementation, since they are the modular unit used to represent the delayed computations.

The third case study also relies heavily on the modularity of the parameterized module system to
allow a clean conceptual separation of the different protocol layers.

Although somewhat qualitative, modularity can be evaluated in terms of ease of moditficauon
and reconfiguration, as a furction of lines of code changed (or added), as a function of time required

for the change, and the impact on the overall system (e.g., is the change made at compile-time,
link-time, or run-time, and do the changes affect (semi-4independent programs which may interact
with the system).

7.2 Control Flow

We also consider the suitability of different control flow mechanisms for different categories of
application interfaces. For example, lazy evaluation offers performance enhancements for system
interfaces with numerous or complex arguments. Using closures to save the relevant environment for
later evaluation reduces the amount of processing that must be done in the critical path; furthermore.

it is possible that some arguments or some portions of more complex arguments might not need to be
processed at all. A routine that only touches one element of a large array or which only conditionally

acctsses one or more of its arguments need not take the time to process the unused data.
A great deal of distributed performance enhancement can come out of the right choice of

evaluation strategy. It is generall-,, a good strategy to exploit system-specific knowledge when it
is available (28, 15, 47]. Consider the analogy of caching to distributed communication. although
the simplistic approach is to fetch data on demand, various combinations of pre-fetching and lazy
evalaation of large data chunks are generally much more efficient choices.

RPC Linda Prot

Parameterized
Modules
First-class

Functions • •

Concurrency

Exceptions 0 0

Figure 7.2: Evaluation Strategy Support
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Figure 7.2 illustrates the relevance of some specific high-level language features to the support
of higher-level evaluation strategies. The ML-RPC system does not take special advantage of
evaluation strategies except in that it is structured to allow parallelism in the form of threads.
However, its interfaces are designed to take function-valued arguments so that it can support

applications using such strategies. The ML-Linda system inherently expects to support at least
the degree of parallelism required for the eva! operator. The usefulness of lazy evaluation in
the implementation of the third case study depends on frame size and the complexity of the data
transmitted, as well as the granularity of fragmentation. These data must be considered in conjunction
with the relative frequency of retry requests (e.g., dropped packets or checksum failures), since a
retry in the presence of delayed evaluation is likely to result in additional processing at the sender.

7.3 Type Issues

Type issues for distributed systems can be broken down into three basic categories. The first
includes the safety and verification issues related to type-checking, both locally and across address
space boundaries. The second includes the issues for a typed language related to the availability of
run-time type information. Finally, the third includes the set of issues concerning the behavior and
transmission of abstract types.

Type Checking

Although we often associate the costs of complex type management with high-level languages,
in fact the overhead exists no matter what language is used. High-level language support makes
complex types more natural and easier to use because the type management support and its associated
overheads are integrated into the language itself. In addition, strong static type checking has the
advantage of minimizing runtime overhead at the cost of a slightly longer compilation cycle. This
is a worthwhile trade-off for systems that rely on the use of complex types.

In a more conventional language, management of the same complex types needs to be provided
by the programmer. The costs are spread out over program development, additional management
code, and debugging and maintenance time. Thus some of the associated overheads are avoided not

by any inherent language efficiency, but by the tendency of the programmer to avoid the difficulties
of providing reliable type management for each new complex type. The advantages of the language
support for type-checking and management are visible in the structure and flexibility of all of the
case studies; they are especially evident during the actual development process.

An issue specific to distributed systems is type checking of messages which cross environment
instantiation boundaries. Such communication is explicitly outside the range of language type-
checking, and potentially compromises the correctness of an entire program. The encoding and
decoding routines of many communication systems have some form of high-level type checking,
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but a certain level of confidence is required to translate an incoming stream of bits into a language
type. Although a communication system implemented in a strongly-typed high level language can
end up with meaningless or garbled input data, it cannot end up with data that will corrupt an entire
system or address space. In addition, self-describing encoding schemes can increase the confidence
in the validity of the incoming data as the descriptors conform to expected inputs. Nevertheless,
absolute safety is impossible as long as the communicating entities are operating independently.

Runtime Type Information

From a language implementor's point of view, a properly designed language with strong static type-
checking should not need any runtime type information. Ensuring the existence of operations with
properly typed interfaces is sufficient type information for abstract or polymorphic types as well as
for more standard explicit types. Unfortunately, this perspective contains some hidden assumptions
about the uniformity of type representations which are not necessarily valid for programs that
inter-operate across the boundaries of a single language environment instantiation. In the absence of
language mechanisms for explicit distribution, communication systems need to incorporate their own
set of mechanisms to ensure, to the best of their ability, type compatibility between communicating
peers. Furthermore, the type checking guarantees apply only to the needs of the system itself,
removing runtime type information makes no allowances for any application-dependent needs .

The issue of runtime type information is the most directly relevant to the domain of the thesis
because of its focus on communication. In order to transmit data in a heterogeneous environment,
it is necessary either to convert between pairs of mutually known data formats, or to choose a fixed
transmission format to be shared by all communicating parties. Either case requires some degree
of translation from the language representation to a linearized format suitable for transmission,
which necessitates access to the physical structure and/or language-level type information of the
data being transmitted. Some languages which rely on static type-checking do not have access to
such information at run-time: such languages are not well suited to support remote communication
without some modification. We see this problem in all three of the case studies.

For base types or explicitly defined complex types, the runtime type information problem can
be addressed with a stub generator: the necessary type information is built into the appropriate
communication stub routines rather than being generated dynamically. This approach bends the
language typing rules by going outside the language itself (i.e. to the interface specifications) to
acquire the type information. Polymorphic types, however, are a special case which require a
dynamic solution. In this case, there is no static information to be gathered by the stub generator;
only a dynamic mechanism can provide the necessary type information".

1The Linda system's tuple-matching algorithm is an example of such an application-specific use of runtime type
information.

2Once a dynamic mechanism exists, the communication encoding routines could also operate within the language and
use the dynamic type information rather than interface specification.
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Abstract Types

The addition of abstract types complicates the typing issue. Abstract types are distinct from complex
types in that their structure is explicitly hidden within the defining module. The availability of type
information is not a problem for normal complex types, since their structure is not hidden. Object
oriented languages have an analogous problem, since objects can be considered as abstract data
types with an associated set of operations. The main principle of abstract types, that of data hiding,
poses a problem in the domain of remote communication. A dynamic typing mechanism would not
address the abstract type problem, since from the language point of view the type returned could
only be the abstract type itself.

Although the transmission of abstract types constitutes an important step in the application
of high-level languages to serious communication systems, it is beyond the scope of this thesis.
However, in the context of the case study implementations we briefly discuss some possible ad hoc
solutions. The communication-related problems can be addressed statically by bending or breaking
the language guarantees of representation-hiding in various ways. Such options all involve a loss of
generality at some level, since various parts of the encoding/decoding process become fixed.

One possibility is to allow the stub generator to extract the concrete type representation from
the implementation source code and embed the necessary type structure in the communication
stub routines. Since the language guarantees the privacy and independence of the concrete type
representation, however, there is no language mechanism which can guarantee that a generated stub
routine corresponds to the concrete representation of the current type instance. It therefore becomes
the responsibility of the user to ensure that the version of the communication stub routine always
corresponds to the version of the type implementation from which it was generated.

Another approach is to require that a set of linearize/unlinearize operations be required for every
abstract type. By fixing the linearization at type implementation time, this approach limits the choice
of external representation format, puts the linearization burden on the programmer, and cannot be
verified by the system. A slightly more palatable variation is to require that each abstract data
type be extended by system-generated linearization routines: this modification at least removes the
linearization burden from the programmer. It still has the drawback of leaving instance matching
outside the system, depending on the user or application programmer to provide the correct source
for input to linearization routine generation; furthermore, it fixes the encoding rules not only at the
time of type implementation but at the time of stub generation or even possibly at stub generator
implementation time.

7.4 Future Work

Although the thesis discusses the application of SML to distributed systems, it does not discuss
the issues involved in distributing the language itself. SML's static typechecking scheme depends
on the uniqueness of its tags to identify types at runtime. Under this scheme, it is impossible
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for types declared in two different SML address spaces to be recognized as the same type. In
addition, if objects and references to objects may be shared across physically separate SML address
spaces, the garbage collection algorithm must be extended to deal effectively with the issues of
distribution. Distributed SML introduces a whole new category of issues, but is likely to fstrengthen
the contributions of SML paradigms to distributed systems].

Since much of the power of a language like SML is in its expressiveness, a communication
system should be able to support transmission of any legitimate value. This is being explored for a
homogeneous environment[46], but there are many additional issues to be considered in extending
this to a heterogeneous environment. There is work being done on various intermediate language
representations for remote function transmission and invocation[9]. In particular, the SML/NJ com-
piler produces intermediate language representations for functions during the course of compilations.
It should be possible to save or dynamically re-generate the intermediate representations for remote
transmission, and have the final compilation be dynamically invoked on the receiver.

We have done some initial work on identifying the features of SML/NJ that are likely to be
heavily used in systems software for distributed systems. Applying that knowledge to the compiler
would allow for generated code with significantly improved performance. This type of feedback
between systems programmers and language designers and implementors can also be extremely
useful in earlier stages of language design and implementation.

Although we have use SML/NJ as the vehicle for our examination of the application of high-level
language paradigms to distributed systems, it is by no means the only candidate. As mentioned
before, several other languages have various combinations of the relevant language mechanisms.
Investigating the differences among the combinations and implementations of these mechanisms in
programming languages other than SMLQNJ would yield a better understanding of the mechanisms
themselves and the implications of different implementation techniques.

A deeper analysis of evaluation alternatives requires a wider range of case studies of systems
implementations. For example, one could consider some finer-grained concurrency in network
processing by using delayed evaluation (in the concurrent sense) to resolve network destination
information while the data is being processed. This approach might be able to make use of multiple
processors on small multiprocessor systems.

From a software engineering point of view, a larger scale study might follow the evolution of
a modularly designed large system, noting the tendency to reuse component modules, or modify
specific system modules rather than redesigning and/or re-implementing the entire system as the
needs and expectations of the users change over time.

7.5 Contributions

This dissertation illustrates the benefits and drawbacks of distributed system design and implemen-
tation on an advanced programming language platform. It combines the principles of high-level
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languages with the performance and functionality required for building distributed systems. Dis-
tributed systems software may have much in common with more traditional system software, but
the size and scope is much larger and correspondingly more complex to manage and use.

Both high-level programming languages and distributed systems have been the subject of much
analysis within their own specific domains, but there has been very little analysis of their interact ions.
The case study designs and implementations provide a concrete framework and body of data for a
preliminary analysis. We see that many of the features of high-level programming languages are
well-suited to support the complexities inherent in distributed systems, and there is much to be
gained from meý-ging the expertise available in the two areas.

Although tk, high-level language environment as a whole provides a strong support bise for
program development and maintenance, the case studies show that most of the advantages specific
to distributed systems programming come from a small handful of language mechanisms, primarily
a parameterized module system, first-class functions, closures, and runtime type information. Other
features clearly have useful and even complementary effects, but in each of the three case studies
we see that the same combinations of mechanisms consistently play the dominant role. On the other
hand, the same set of mechanisms can be combined in different ways to yield different constructs:
in this respect, the data from each of the case studies emphasizes a different application of the same
basic mechanisms.

The case studies highlight both some of the advantages and disadvantages in current high-
level language implementations in supporting distributed systems programming. The data and
corresponding analysis is a starting point for the feedback loop between systems programmers and
language developers which is necessary before we can realistically move from experimental to
production systems development in such high-level environments.

The case study designs and implementations demonstrate that a range of distributed systems can
be expressed naturally and effectively using a set of advanced language mechanisms. in particular,
the combination of a parameterized module system, a strong type system, runtime type information,
and first-class functions provided the most support. Although no existing advanced languages
support this specific subset of language mechanisms, the state of advanced languages has evolved to
the point where on-going development is occurring and many of the performance limitations have
known, feasible solutions. Thus an integrated set of high-level language mechanisms is an important
tool for systems programmers since it is well-suited to address the inherent modularity, complex
state and failure modes of distributed systems, and can extend many of the advanced language
guarantees to the distributed environment.

7.6 Conclusions

The growing size and complexity of distributed systems transform abstractions such as modularity
from stylistic concerns to issues of much more fundamental importance. Modularity, in particular,

101



is important for distributed systems since distribution is inherently modular: the physical separation
of components makes their separate evolution almost inevitable. The ability to reason about and
customize system modules in isolation is crucial to effective distributed systems. Furthermore,
as programs grow larger, they tend to evolve rather than be replaced. Physical separation and
distinct administrative domains also require routine version and environment consistency checks
that would have been unnecessary in a strictly local system. Programming language mechanisms
which support modular, type-safe interactions greatly increase the safety and coherency of interfaces
and implementations by allowing the language to enforce these constraints.

The ability to treat functions as first-class objects and to encapsulate an environment (set of
variable bindings) into a function in the form of a closure can provide a great deal of flexibility in
selective collapsing and recombination of program layers and operations. Passing first-class function
arguments across module boundaries preserves the encapsulation of the layer implementation. but
nevertheless allows reordering and composition of operations across layer boundaries. This flexi-
bility introduces the potential for a wide variety of alternate evaluation strategies suited to different
application requirements. This flexibility is reflected in the ease of design and implementation. and
also in the modularity that allows operations such as dynamic reconfiguration.

Even token adherence to modular design is likely to improve programming systems, but the
real power comes from the ability to use a set of language constructs in combination within the
framework of a language which guarantees the safety of their interactions. Such an advanced
programming language can also provide formal semantics and provably correct programming feature
interactions, which creates a basis for constructing verification systems for program correctness.
Most conventional languages do not enforce interface specifications, nor do they allow private
(nested) procedure definitions or offer protection from implicit dependencies on values of global
variables. Such interdependencies can be even more complex in a distributed system, where an
application programmer may not even have access to all the necessary information about system
state: in that case, it is imperative that a systems package be able to reliably encapsulate its private
data, so that the integrity both of the system and of the application can be properly maintained.
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Appendix A

SML

This appendix presents a description of the syntax and semantics of SML, and a brief discussion
of some of the relevant implementation details. SML is the standardized version of the functional
language ML (meta language), which was conceived as a medium for finding and performing proofs
in a logical language[43]. There are compilers for SML and several related dialects, but any specific
references in this thesis will be to the Standard ML of New Jersey (SML/NJ) compiler. For more
detailed language descriptions, Milner[43] or Paulson[48]; for implementation details or evaluation,
see Appel[3j.

A.1 Syntax and Semantics

Standard ML' is a strongly-typed functional language (with type inference and pattern matching)
that supports first-class functions, abstract and polymorphic types. recursion, exception handling,
garbage collection, and a powerful module system [43].

Some of the examples will be presented as interpreter sessions. The SML/NJ interpreter prompt
is the symbol '-'. Programmer input follows the prompt, and is terminated by a semicolon. If the
input exceeds a single line, the interpreter prompts with the symbol '-' after each carnage return.
The interpreter then evaluates each semicolon-terminated input, and prints out the a representation
of the resulting value on a line without the prompt. If an expression is unnamed, its value is assigned
to the special variable it so that it can be referenced.

Some code fragments will contain embedded comments, which are delimited by the symbols
(*' and '*) '. The keyword unir- or the special symbol () are used to represent a null value.

'Strictly speaking, SML is an impure functional language because it includes imperative features such as assignment.
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Types and Values

All types in SML are immutable except for a few special cases such as arrays and refs ireference
variables). Variables do not support assignment, but are bound at instantiation to an immutable
value which is garbage collected when it is no longer needed.

Types in SML are declared and defined with one of the keywords type or datatype2  The
dataty"e keyword, described later, indicates an enumerated type composed of a type name and a
set of constructors. A datarype declaration always includes the type representation as well as the
type name.

Simple types in SML are declared and defined with the keyword type followed by the type
name, an equal sign. and the type specification. A simple type can be any base type or any legal
combination of base types. SML supports the built-in types int, string, array. bool, real, list, unit,
and ref.

type sentence - string
type paragraph = string list

Values are declared and defined with the keyword va13. Variable declarations consist of the
keyword val and an identifier followed by a colon and a type specification. Values are defined
with vat followed by the variable name, an optional type declaration, and the the variable definition
preceded by an equal sign. Since SML uses implicit typing a type declaration is not normally
required, although it can be included: it consists of a colon followed by the type name or specification.
The following example shows the definitions of two integer values, one explicitly typed and one
implicitly typed. In both cases, the form of the interpreter response is the same.

- val il int = 3;
val il 3 : int

- val i2 4;
val i2 4 : int

Lists are delimited by square brackets ( 3), and their elements are separated by commas. A
list has a specific type, and all elements of a list must be of that type. The empty list is denoted by
empty brackets or the reserved keyword nil. Lists are always null-terminated.

- val ilist = (I, 2, 3];
val ilist = (1,2,3] : int list

Any combination of legal types may be combined into a tuple. A tuple declaration is represented
by an asterisk-separated list of type identifiers, delimited by parentheses: a tuple value is represented

2eqtype is a special case of type which is used to indicate abstract types which support equality.
'Note that a value may be a functiorn as well as an object
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as a comma-separated list of values, also delimited by parentheses. Tuple components may be
identified by their position in the tupled sequence by using the symbol # and the integer correspond-
ing to the desired component's position in the tuple sequence, so the order of tuple components is
significant.

- val tl = (1, 2);
va ti = (1,2) : int * int

- val t2 = (2, 1);
val t2 = (2,1) int * int

- tl - t2;
val it = false bool

- #1 ti;
vat it = I int

- #1 t2;
val it = 2 int

A tuple may be defined and used dynamically, or may be defined and named as a distinct
user-defined type. The following example defines the type imag-num as a tuple of two integers,
The variable iml, declared as type imag-num, is assigned to the tuple (1,4). The variable v is
also assigned to the tuple (1, 4), but without the type declaration. Note that the type o f v is not
imag-num, but int * int.

- type imag_num = int * int;
type inag_num = int * int

- val iml: imagnum = (1, 4);
val iml = (1,4) : imag_num

- val v = (1, 4);

val v = (1,4) : int * int

SML also supports a record type. A record is a tuple whose components, orfields have labels 4.

Since the fields are explicitly labeled, the order of record components is not significant. A record is
enclosed in curly braces ({... }); in a record declaration, each field has the form label: value, and in
a definition or pattern match, each has the form label = value. For example, the type dest from
the PEER signature (see Figure 3.5) is an SML record with two fields: rpeer and rport.

type dest = {rpeer: host, rport: port}

If host1 is a value of type host, and portl is a value of type port, then an object of type dest
could be created and referenced as follows:

"An SML record type is similar to the type usually called structure in other programming languages.
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val destl = {rpeer = hostl, rport = portli

- #rport destl;
val it = portl : port

Sometimes it is useful to define a type that is an abstraction uniting several heterogeneous
objects, each of which may in turn be an abstraction. Such types are declared with the keyword
datatype and a set of constructors, each of which represents one of the group of heterogeneous
objects. Constructors are separated by the symbol ' I '. Each constructor is effectively an operator,
accessible to any scope which can access the datatype definition, which, when applied to some
(possibly null) set of types, constructs an instance of the defined type. Consider the following type
declaration:

datatype dessert = EMPTY I PIE of string I COiKIE of int

This defines a new type dessert, which can be represented by any one of the constructors above.
The constructor EMPTY does not take any arguments, but PIE takes a string which can describe
the type of pie, and COOKIE takes an integer which specifies the number of cookies. If none of the
constructors took any arguments, then the resulting type would be similar to the enumeration type
available in some more traditional languages.

If the datatype definition is included in the signature as well as in the structure, then the type
implementation as well as the type is exported to the outside world. If, instead, the signature simply
defines the type name, then the internal representation of the datatype is available only within the
declaring structure. This is referred to as an abstract or opaque type.

Just as datatypes can be constructed using their constructors, they can also be analogously
deconstructed. SML incorporates a pattern matching facility which can be used to break objects
into cases, This facility is used primarily in function definitions, variable definitions, and case
statements. A routine which prints out the value of an object of type dessert might look as
follows:

fun print-dessert EMPTY =

print "dessert is undefined"
I print-dessert PIE p =

print "dessert is " A p A " pie"
I print-dessert COOKIE n =

print "dessert is " A makestxing n A
" cookies"

Depending on the case of the function argument, a different function body will be executed. Applying
the pattern match identifies the constructor, and binds any constructor arguments to the variable
names in the pattern. Once bound, these variables can be used in the function body. The different
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function bodies are separated by the symbol ' I ',just as in the datatype definition. The symbol'
is the SML string concatenation symbol; the function makestring is an operation exported by the
built-in Integer abstraction, and converts an integer value to an equivalent string representation.

Polymorphism is expressed in SML with type variables. SML uses the single-quote character to
tag its type variables; the tagged variables are read as the corresponding Greek letters to distinguish
them from regular variables. Thus, ' a is read as alpha. For example. the type of a polymorphic array
would be ' a array, where ' a is the polymorphic variable. The polymorphism is at instance
granularity; all elements of any particular array must be of the same type, which is determined by
the initialization value.

SML also defines a reference type, identified by the keyword ref. References are essentially
pointers. Refs themselves are immutable; their values are fixed storage locations. Assigning a
new value to a ref changes the contents of the specified location in storage. re f is a polymorphic
type used to declare reference types; the same keyword is also a constructor which initializes re f
values. A ref can be updated using the assignment operator ':=', and its contents can be extracted
with the dereferencing operator '!'. The value of ':=' is unit, and the value of '!' is the type of the
ref object being dereferenced.

- val uniquifier int ref = ref 3
val uniquifier = ref 3 : int ref

- ! uniquifier;
val it = 3 int

- uniquifier := 6;
val it = () unit

- !uniquifier;
val it = 6 : int

Functions

In SML a function-valued object can be defined with the keyword fn and the reserved symbol =>.

For example, the following code defines a function which takes an integer argument and returns an
integer result equal to twice the value of the argument:

fn i => (2 * i)

The above format is generally reserved for unnamed function definitions. Named functions are
more conventionally defined with the keyword fun:

fun double i = (2 * i)

Function objects can also be created by applying a defined function to fewer arguments than
appear on the left-hand side of its definition. This method is sometimes called partial application.
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Simple functions take a single argument, which may be either a simple type or a ruple of arbitrary
types. A tupled argument is similar to the n procedure call syntax in most conventional programming
languages.

val f: (int * bool) -> int

fun f (i, b) -

if b
then (i + 1)

else (i - 1)

This declaration indicates that f is a function which takes a tuple composed of an integer and a
boolean and returns an integer. The -> symbol indicates the return value of a function, so the
object £ is a function object. Its declaration therefore uses the keyword fun.

The second way of representing a list of multiple function arguments is by currying (see section
2). The result of applying the curried function to its first argument is another function, which can
then be applied to the next argument in the list. The declaration of a curried function might look as
follows:

val greater-than: int -> int -> bool
fun greater-than a b =

if (a > b)
then true

else false

Since the fumcdon greater-than is curried, it can be used to create a new function called
gt5 which takes an integer argument and returns true if 5 is greater than its argument, and false
otherwise. This function can be constructed as follows:

val gt5 = greater-than 5

Signatures, Structures and Functors

The modular unit in SML is the structure; an SML signature is an interface specification which
enumerates any types, exceptions, variables, constants, and functions exported by an associated

structure. A structure must implement all specifications in its signature, although a structure may
implement functionality not exported by the signature. This allows the possibility of multiple views
of a single structure, where each view exports a subset of the total functionality of the structure. A
signature in SML is defined with the keyword signature followed by the module name; the signature
body is delimited by the keywords sig and end.

SML structures can be combined hierarchically using functors. which are parameterized struc-
tures whose parametzrs are bound at their invocation (link time) to other structure instances of the
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- signature SIGI
= sig

val a: int

- end
signature SIG_ =

sig
val a : int

end

- structure hrgl SIG_1 =

- struct
val a = 3

= end
structure Arg. : SIG_1

Figure A.l: SML Structure Definition

types specified by signature identifiers in the functor header. Each functor can access the exported
types, values, and operations of its parameter modules, but only for internal use. The external spec-
ification for any SML module (structure or functor) is always statically specified by its signature,
and only features specified in the signature are accessible from outside the structure or functor.

A structure is defined as shown in Figure A.1 with the keyword structure followed by the
module name, and the body is delimited by the keywords struct and end. A functor is defined
similarly, as shown in Figure A. 1, although the defining keyword is functor rather than structure,
and the module name is followed by a (possibly empty) list of parameter modules and their type
declarations.

In functor Funct, the value of b is dependent on the implementation of the parameter assigned
to A. The types are all known at compile time, but the values are bound only when the functor
arguments are instantiated:

- structure F = Funct (structure A = Argl);

structure F : SG-2
- F.b;

val it = 3 int
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- signature SIG-2
= sig
= val b: int
- end

signature SI G 2
sig

val b : int
end

- functor Funct (structure A: SIG_1) : SIG_2
= struct
= val b = A. a

= end

functor Funct : <sig>

Figure A.2: SML Functor Definition

A.2 Implementation

Note that it is inexpensive to pass lists as function parameters because a list is defined by a pointer
to its first element[53].

Further details on the syntax, semantics, and implementation(s) of SML can be found in*[5, 43,
4,48,3]
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Appendix B

Data for SML and C Baselines

fun loop3 fcn n =

let
val foo = (fcn n n n)

in
if (n = 0) then (foo)
else foo (loop3 fcn (n - I))

end

Figure B. 1: Curried Function Application

(* loop function for 25-tuple *)
fun loopfn n =

let
val al = (n,n,n,nn, n,n,n,nn,n,

n, n, n, n, n, n, n, n, n, n,
n,n,n,nrn)

in
if (n = 0) then Cal]

else al :: (loopfn (n - 1))

end

Figure B.2: SML Allocation Test
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Free Variables 3max (R3000a, 72M) Sun4/330

Loop overhead 0.49 (0.01) 1.46 (0.02)
1 1.83 (0.02) 6.18 (0.04)
2 2.69 (0.01) 9.12 (0.08)
3 3.62 (0.02) 12.36 (0.12)
4 4.68 (0.01) 16.28 (0.10)
5 6.72 (0.02) 24.22 (0.19)
6 8.34 (0.02) 29.20 (0.19)
7 9.16 (0.03) 35.65 (0.19)
8 10.55 (0.03) 42.74 (0.16)
9 11.97 (0.04) 50.58 (0.39)
10 13.61 (0.04) 58.88(0.10)

Table B. 1: SML Closure Construction Times (microseconds)

void alloctest (int trials, int iters, int elts)
long *intlist liters];
int i = 0, j = 0;
int sz = sizeof(long) * elts;
struct timeval tl, t2;

/* do the timed alloc test */
gettimeofday (&tl, 0);
for (i = 0; i < iters; i++)

intlist[i] = (long *) malloc (sz);
bzero ((char *) intlist[i], sz);

gettimeofday (&t2, 0);

Figure B.3: C Allocation Test

118



Block Size 3max/SML 3maxlgccj Sun4/SML Sun4/gcc

1 1.03"(0.08) 5.11 (0.07) J 2.33 (0.07) 9.91 (0.03)
10 2.09 (0.11) 6.67 (0.17) j 6.60 (0.73) 13.80 (0.08)

25 3.52 (0.17) 7.89 (0.15) 13.92 (1.64) 18.95 (0.04)
50 4.75 (0.20) 9.40 (0.29) 22.91 (2.33) 27.40 (0.21)
75 5.84(0.33) 11.03 (0.21) t 34.00 (4.99) 36.13 (0.28)
100 7.13 (0.32) 12.47 (0.10) 43.95 (4.06) 44.50 (0.53)

Table B.2: Block Allocation Times (microseconds)

fun procloop3 fcn al a2 a3 n =

let
fun aloop 0 = fcn al a2 a3

I aloop i - (fcn al a2 a3; aloop (i - i))
in

aloop n
end

Figure B.4: SML Procedure Call Test Loop for 3 Arguments

void loopproc3 (int iters, void *fcn),
int al, int a2, int a3)

int i 0;
for (i = 0; i < iters; i++)

sumproc ();
fcn (al, a2, a3);

Figure B.5: C Procedure Call Test Loop for 3 Arguments
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Arguments SMLl3max gcc/3max SML/Sun4 SML/Sun4

Loop [[ 0.96(0.02) 1.00 (0.00) 2.26 (0.07) 1.26 (0.01)

0 1.77 (0.01) 1.58(0.02) 4.40 (0.07) 2.02 (0.02)
1 2.43 (0.01) 1.70 (0.04) 6.02 (0.06) 2.34 (0.05)
2 4.13 (0.02) 1.88 (0.02) 10.45 (0.08) 2.92 (0.01)i
3 5.54 (0.02) 2.06 (0.03) 15.41 (0.20) 3.49 (0.02)
4 7.11 (0.03) 2.31 (0.07) 20.71 (0.12) 4.06 (0.03)

Table B.3: Procedure Call Times (microseconds)
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